The Hodge--de Rham Laplacian and Tachibana operator on a~compact Riemannian
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 375-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a comparative analysis of the spectral properties of the Hodge–de Rham and Tachibana operators on compact Riemannian manifolds whose curvature operator is bounded and has a definite sign. We find bounds for their spectra and estimate their multiplicities.
Keywords: Riemannian manifold, curvature operator, elliptic operators, eigenvalues and eigenforms, conformal Killing forms, harmonic forms.
@article{IM2_2015_79_2_a6,
     author = {S. E. Stepanov and J. Mike\v{s}},
     title = {The {Hodge--de} {Rham} {Laplacian} and {Tachibana} operator on a~compact {Riemannian}},
     journal = {Izvestiya. Mathematics },
     pages = {375--387},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a6/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - J. Mikeš
TI  - The Hodge--de Rham Laplacian and Tachibana operator on a~compact Riemannian
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 375
EP  - 387
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a6/
LA  - en
ID  - IM2_2015_79_2_a6
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A J. Mikeš
%T The Hodge--de Rham Laplacian and Tachibana operator on a~compact Riemannian
%J Izvestiya. Mathematics 
%D 2015
%P 375-387
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a6/
%G en
%F IM2_2015_79_2_a6
S. E. Stepanov; J. Mikeš. The Hodge--de Rham Laplacian and Tachibana operator on a~compact Riemannian. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 375-387. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a6/

[1] J. Jost, Riemannian geometry and geometric analysis, Universitext, 6th ed., Springer, Heidelberg, 2011, xiv+611 pp. | DOI | MR | Zbl

[2] I. Chavel, Eigenvalues in Riemannian geometry, Pure Appl. Math., 115, Academic Press, Inc., Orlando, FL, 1984, xiv+362 pp. | MR | Zbl

[3] M. Craioveanu, M. Puta, T. M. Rassias, Old and new aspects in spectral geometry, Math. Appl., 534, Kluwer Acad. Publ., Dordrecht, 2001, x+445 pp. | DOI | MR | Zbl

[4] S. E. Stepanov, “A new strong Laplacian on differential forms”, Math. Notes, 76:3 (2004), 420–425 | DOI | DOI | MR | Zbl

[5] S. E. Stepanov, J. Mikeš, “Betti and Tachibana numbers of compact Riemannian manifolds”, Differential Geom. Appl., 31:4 (2013), 486–495 | DOI | MR | Zbl

[6] S. E. Stepanov, J. Mikeš, “Betti and Tachibana numbers”, Miskolc Math. Notes, 14:2 (2013), 475–486 | MR | Zbl

[7] J.-P. Bourguignon, “Formules de Weitzenböck en dimension 4”, Geometrie riemannienne en dimension 4, Semin. Arthur Besse, Paris 1978/79, Textes Math., 3, Cedic, Paris, 1981, 308–333 | MR | Zbl

[8] S. E. Stepanov, “On conformal Killing 2-form of the electromagnetic field”, J. Geom. Phys., 33:3-4 (2000), 191–209 | DOI | MR | Zbl

[9] S. E. Stepanov, “A class of closed forms and special Maxwell's equations”, Tensor (N.S.), 58:3 (1997), 233–242 | MR | Zbl

[10] S. Tachibana, S. Yamaguchi, “The first proper space of $\Delta$ for $p$-forms in compact Riemannian manifolds of positive curvature operator”, J. Differential Geom., 15:1 (1980), 51–60 | MR | Zbl

[11] T. Kashiwada, “On conformal Killing tensor”, Natur. Sci. Rep. Ochanomizu Univ., 19 (1968), 67–74 | MR | Zbl

[12] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987, xii+510 pp. | DOI | MR | MR | Zbl | Zbl

[13] S. E. Stepanov, “Curvature and Tachibana numbers”, Sb. Math., 202:7 (2011), 1059–1069 | DOI | DOI | MR | Zbl

[14] S. E. Stepanov, “Some conformal and projective scalar invariants of Riemannian manifolds”, Math. Notes, 80:6 (2006), 848–852 | DOI | DOI | MR | Zbl

[15] S. Tachibana, “On Killing tensors in Riemannian manifolds of positive curvature operator”, Tôhoku Math. J. (2), 28:2 (1976), 177–184 | DOI | MR | Zbl

[16] S. E. Stepanov, “The vector space of the conformal Killing forms on a Riemannian manifold”, J. Math. Sci. (New York), 110:4 (2002), 2892–2906 | DOI | MR | Zbl

[17] S. Tachibana, K. Ogiue, “Les variétés riemanniennes dont l'opérateur de courbure restreint est positif sont des sphères d'homologie réelle”, C. R. Acad. Sci. Paris Sér. A-B, 289 (1979), A29–A30 | MR | Zbl

[18] S. Nishikawa, “On deformation of Riemannian metrics and manifolds with positive curvature operator”, Curvature and topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math., 1201, Springer, Berlin, 1986, 202–211 | DOI | MR | Zbl

[19] T. Kashiwada, “On the curvature operator of the second kind”, Natur. Sci. Rep. Ochanomizu Univ., 44:2 (1993), 69–73 | MR | Zbl

[20] J.-P. Bourguignon, H. Karcher, “Curvature operators: pinching estimates and geometric examples”, Ann. Sci. École Norm. Sup. (4), 11:1 (1978), 71–92 | MR | Zbl

[21] P. Petersen, Riemannian geometry, Grad. Texts in Math., 171, 2nd ed., Springer, New York, 2006, xvi+401 pp. | DOI | MR | Zbl

[22] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Actualités Sci. Ind., 1222, = Publ. Inst. Math. Univ. Nancago, III, Hermann et Cie, Paris, 1955, vii+196 pp. | MR | MR | Zbl

[23] D. Meyer, “Sur les variétés riemanniennes à operateur de courbure positif”, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971), A482–A485 | MR | Zbl

[24] S. E. Stepanov, I. I. Tsyganok, “Theorems of existence and of vanishing of conformally killing forms”, Russian Math. (Iz. VUZ), 58:10 (2014), 46–51 | DOI

[25] S. Gallot, D. Meyer, “Sur la première valeur propre du $p$-spectre pour les variétés à opérateur de courbure positif”, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A1619–A1621 | MR | Zbl

[26] S. E. Stepanov, J. Mikesh, I. Hinterleitner, “Projective mappings and dimensions of vector spaces of three types of Killing–Yano tensors on pseudo Riemannian manifolds of constant curvature”, AIP Conf. Proc., 1460 (2012), 202–205

[27] S. Tachibana, “On the proper space of $\Delta$ for $m$-forms in $2m$ dimensional conformally flat Riemannian manifolds”, Natur. Sci. Rep. Ochanomizu Univ., 29:2 (1978), 111–115 | MR | Zbl

[28] D. Perrone, “On the minimal eigenvalue of the Laplacian operator for $p$-forms in conformally flat Riemannian manifolds”, Proc. Amer. Math. Soc., 86:1 (1982), 103–108 | DOI | MR | Zbl

[29] I. Iwasaki, K. Katase, “On the spectra of Laplace operator on $\Lambda^*(S^n)$”, Proc. Japan Acad. Ser. A Math. Sci., 55:4 (1979), 141–145 | DOI | MR | Zbl

[30] M. S. Agranovich, “Elliptic operators on closed manifolds”, Partial differential equations VI, Encyclopaedia Math. Sci., 63, Springer, Berlin, 1994, 1–130 | MR | Zbl

[31] J. Dodziuk, “$L^2$ harmonic forms on rotationally symmetric Riemannian manifolds”, Proceedings of the American Mathematical Society, 77:3 (1979), 395–400 | MR | Zbl

[32] H. Donnelly, “The differential form spectrum of hyperbolic space”, Manuscripta Mathematica, 33 (1981), 365–385 | DOI | MR | Zbl