A~strengthening of a~theorem of Bourgain and Kontorovich. III
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 288-310
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the set of positive integers contains a positive proportion
of denominators of the finite continued fractions all of whose partial
quotients belong to the alphabet $\{1,2,3,4,10\}$. The corresponding
theorem was previousy known only for the alphabet $\{1,2,3,4,5\}$ and
for alphabets of larger cardinality.
Keywords:
continued fraction, trigonometric sum
Mots-clés : continuant, Zaremba's conjecture.
Mots-clés : continuant, Zaremba's conjecture.
@article{IM2_2015_79_2_a3,
author = {I. D. Kan},
title = {A~strengthening of a~theorem of {Bourgain} and {Kontorovich.} {III}},
journal = {Izvestiya. Mathematics },
pages = {288--310},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/}
}
I. D. Kan. A~strengthening of a~theorem of Bourgain and Kontorovich. III. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 288-310. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/