A~strengthening of a~theorem of Bourgain and Kontorovich. III
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 288-310

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the set of positive integers contains a positive proportion of denominators of the finite continued fractions all of whose partial quotients belong to the alphabet $\{1,2,3,4,10\}$. The corresponding theorem was previousy known only for the alphabet $\{1,2,3,4,5\}$ and for alphabets of larger cardinality.
Keywords: continued fraction, trigonometric sum
Mots-clés : continuant, Zaremba's conjecture.
@article{IM2_2015_79_2_a3,
     author = {I. D. Kan},
     title = {A~strengthening of a~theorem of {Bourgain} and {Kontorovich.} {III}},
     journal = {Izvestiya. Mathematics },
     pages = {288--310},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - A~strengthening of a~theorem of Bourgain and Kontorovich. III
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 288
EP  - 310
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/
LA  - en
ID  - IM2_2015_79_2_a3
ER  - 
%0 Journal Article
%A I. D. Kan
%T A~strengthening of a~theorem of Bourgain and Kontorovich. III
%J Izvestiya. Mathematics 
%D 2015
%P 288-310
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/
%G en
%F IM2_2015_79_2_a3
I. D. Kan. A~strengthening of a~theorem of Bourgain and Kontorovich. III. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 288-310. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/