A~strengthening of a~theorem of Bourgain and Kontorovich. III
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 288-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the set of positive integers contains a positive proportion of denominators of the finite continued fractions all of whose partial quotients belong to the alphabet $\{1,2,3,4,10\}$. The corresponding theorem was previousy known only for the alphabet $\{1,2,3,4,5\}$ and for alphabets of larger cardinality.
Keywords: continued fraction, trigonometric sum
Mots-clés : continuant, Zaremba's conjecture.
@article{IM2_2015_79_2_a3,
     author = {I. D. Kan},
     title = {A~strengthening of a~theorem of {Bourgain} and {Kontorovich.} {III}},
     journal = {Izvestiya. Mathematics },
     pages = {288--310},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - A~strengthening of a~theorem of Bourgain and Kontorovich. III
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 288
EP  - 310
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/
LA  - en
ID  - IM2_2015_79_2_a3
ER  - 
%0 Journal Article
%A I. D. Kan
%T A~strengthening of a~theorem of Bourgain and Kontorovich. III
%J Izvestiya. Mathematics 
%D 2015
%P 288-310
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/
%G en
%F IM2_2015_79_2_a3
I. D. Kan. A~strengthening of a~theorem of Bourgain and Kontorovich. III. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 288-310. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a3/

[1] S. K. Zaremba, “La méthode des “bons treillis” pour le calcul des intégrales multiples”, Applications of number theory to numerical analysis, Proc. Sympos. (Univ. Montreal, Montreal, Que., 1971), Academic Press, New York, 1972, 39–119 | MR | Zbl

[2] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196 | DOI | MR | Zbl

[3] N. G. Moshchevitin, On some open problems in Diophantine approximation, arXiv: 1202.4539v4

[4] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963, 224 pp. | MR | Zbl

[5] D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl

[6] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4:1 (2004), 63–76 | DOI | MR | Zbl

[7] D. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem by elementary methods, arXiv: 1207.4546

[8] D. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem, arXiv: 1207.5168

[9] I. D. Kan, D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich”, Izv. Math., 78:2 (2014), 293–353 | DOI | DOI | MR | Zbl

[10] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Moscow J. Combin. Number Theory, 4:1 (2014), 78–117

[11] Shinnyih Huang, An improvement on Zaremba's conjecture, arXiv: 1303.3772v1

[12] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics: A foundation for computer science, 2nd ed., Addison-Wesley Publ. Co., Reading, MA, 1994, xiv+657 pp. | MR | Zbl

[13] A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl

[14] R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 80, Cambridge Univ. Press, Cambridge–New York, 1981, xi+172 pp. | MR | MR | Zbl | Zbl