Estimates for the error of approximation of functions in $L_p^1$ by polynomials
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 257-287

Voir la notice de l'article provenant de la source Math-Net.Ru

We find exact estimates for the error of approximation of functions in the classes $L_p^1$ by polynomials in the Haar system and partial sums of the Faber–Schauder series in the metrics of the spaces $L_p$. The error in approximating a function $f\in L_p^1$ is estimated in terms of the norms of the first derivatives $\|f^{(1)}\|_{L_p}$ and $\|f^{(1)}-\overline S^{(1)}_n(f)\|_{L_p}$. The resulting bounds are unimprovable for some values of $n$.
Keywords: Haar system of functions, Faber–Schauder system of functions, best approximation of functions by polynomials, one-sided approximation of functions by polynomials.
@article{IM2_2015_79_2_a2,
     author = {S. B. Vakarchuk and A. N. Shchitov},
     title = {Estimates for the error of approximation of functions in $L_p^1$ by polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {257--287},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a2/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - A. N. Shchitov
TI  - Estimates for the error of approximation of functions in $L_p^1$ by polynomials
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 257
EP  - 287
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a2/
LA  - en
ID  - IM2_2015_79_2_a2
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A A. N. Shchitov
%T Estimates for the error of approximation of functions in $L_p^1$ by polynomials
%J Izvestiya. Mathematics 
%D 2015
%P 257-287
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a2/
%G en
%F IM2_2015_79_2_a2
S. B. Vakarchuk; A. N. Shchitov. Estimates for the error of approximation of functions in $L_p^1$ by polynomials. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 257-287. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a2/