Localization of eigenvalues and estimation of the spread for complex matrices
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 208-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given complex matrix we describe new methods for localizing the eigenvalues and new upper bounds for the spread. These methods and upper bounds are sharper than those previously known.
Keywords: eigenvalues, localization, spread, upper bounds, new methods.
@article{IM2_2015_79_1_a8,
     author = {J. Wu and D. Wang and J. Zhao},
     title = {Localization of eigenvalues and estimation of the spread for complex matrices},
     journal = {Izvestiya. Mathematics },
     pages = {208--215},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a8/}
}
TY  - JOUR
AU  - J. Wu
AU  - D. Wang
AU  - J. Zhao
TI  - Localization of eigenvalues and estimation of the spread for complex matrices
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 208
EP  - 215
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a8/
LA  - en
ID  - IM2_2015_79_1_a8
ER  - 
%0 Journal Article
%A J. Wu
%A D. Wang
%A J. Zhao
%T Localization of eigenvalues and estimation of the spread for complex matrices
%J Izvestiya. Mathematics 
%D 2015
%P 208-215
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a8/
%G en
%F IM2_2015_79_1_a8
J. Wu; D. Wang; J. Zhao. Localization of eigenvalues and estimation of the spread for complex matrices. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 208-215. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a8/

[1] L. Mirsky, “The spread of a matrix”, Mathematika, 3:2 (1956), 127–130 | DOI | MR | Zbl

[2] L. Mirsky, “Inequalities for normal and Hermitian matrices”, Duke Math. J., 24:4 (1957), 591–599 | DOI | MR | Zbl

[3] E. Deutsch, “On the spread of matrices and polynomials”, Linear Algebra Appl., 22 (1978), 49–55 | DOI | MR | Zbl

[4] P. R. Beesack, “The spread of matrices and polynomials”, Linear Algebra Appl., 31 (1980), 145–149 | DOI | MR | Zbl

[5] Bo Xun Tu, “On the spread of a matrix”, Chinese, Fudan Xuebao, 23:4 (1984), 435–442 | MR | Zbl

[6] Yi Xi Gu, “The distribution of eigenvalues of a matrix”, Acta Math. Appl. Sinica, 17:4 (1994), 501–511 | MR

[7] Limin Zou, Youyi Jiang, “Estimation of the eigenvalues and the smallest singular value of matrices”, Linear Algebra Appl., 433:6 (2010), 1203–1211 | DOI | MR | Zbl

[8] Ó. Rojo, R. L. Soto, H. Rojo, Tin Yau Tam, “Eigenvalue localization for complex matrices”, Proyecciones, 11:1 (1992), 11–19 | MR | Zbl

[9] R. Kress, H. L. de Vries, R. Wegmann, “On nonnormal matrices”, Linear Algebra Appl., 8:2 (1974), 109–120 | DOI | MR | Zbl

[10] Bo Xun Tu, “A lower bound for the rank of a matrix and sufficient conditions for nonsingularity of a matrix. I”, Chinese, Fudan Xuebao, 21:4 (1982), 416–422 | MR

[11] R. Sharma, R. Kumar, “Remark on upper bounds for the spread of a matrix”, Linear Algebra Appl., 438:11 (2013), 4359–4362 | DOI | MR | Zbl

[12] H. Wolkowicz, G. P. H. Styan, “Bounds for eigenvalues using traces”, Linear Algebra Appl., 29 (1980), 471–506 | DOI | MR | Zbl

[13] H. Wolkowicz, G. P. H. Styan, “More bounds for eigenvalues using traces”, Linear Algebra Appl., 31 (1980), 1–17 | DOI | MR | Zbl

[14] J. L. Wu, “Distribution and estimation for eigenvalues of real quaternion matrices”, Comput. Math. Appl., 55:9 (2008), 1998–2004 | DOI | MR | Zbl

[15] Junliang Wu, Limin Zou, Xiangping Chen, Shengjie Li, “The estimation of eigenvalues of sum, difference, and tensor product of matrices over quaternion division algebra”, Linear Algebra Appl., 428:11-12 (2008), 3023–3033 | DOI | MR | Zbl

[16] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | MR | Zbl | Zbl

[17] R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge Univ. Press, Cambridge, 1991, viii+607 pp. | DOI | MR | Zbl

[18] R. S. Varga, Geršgorin and his circles, Springer Ser. Comput. Math., 36, Springer-Verlag, Berlin, 2004, x+226 pp. | DOI | MR | Zbl