Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_1_a8, author = {J. Wu and D. Wang and J. Zhao}, title = {Localization of eigenvalues and estimation of the spread for complex matrices}, journal = {Izvestiya. Mathematics }, pages = {208--215}, publisher = {mathdoc}, volume = {79}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a8/} }
TY - JOUR AU - J. Wu AU - D. Wang AU - J. Zhao TI - Localization of eigenvalues and estimation of the spread for complex matrices JO - Izvestiya. Mathematics PY - 2015 SP - 208 EP - 215 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a8/ LA - en ID - IM2_2015_79_1_a8 ER -
J. Wu; D. Wang; J. Zhao. Localization of eigenvalues and estimation of the spread for complex matrices. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 208-215. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a8/
[1] L. Mirsky, “The spread of a matrix”, Mathematika, 3:2 (1956), 127–130 | DOI | MR | Zbl
[2] L. Mirsky, “Inequalities for normal and Hermitian matrices”, Duke Math. J., 24:4 (1957), 591–599 | DOI | MR | Zbl
[3] E. Deutsch, “On the spread of matrices and polynomials”, Linear Algebra Appl., 22 (1978), 49–55 | DOI | MR | Zbl
[4] P. R. Beesack, “The spread of matrices and polynomials”, Linear Algebra Appl., 31 (1980), 145–149 | DOI | MR | Zbl
[5] Bo Xun Tu, “On the spread of a matrix”, Chinese, Fudan Xuebao, 23:4 (1984), 435–442 | MR | Zbl
[6] Yi Xi Gu, “The distribution of eigenvalues of a matrix”, Acta Math. Appl. Sinica, 17:4 (1994), 501–511 | MR
[7] Limin Zou, Youyi Jiang, “Estimation of the eigenvalues and the smallest singular value of matrices”, Linear Algebra Appl., 433:6 (2010), 1203–1211 | DOI | MR | Zbl
[8] Ó. Rojo, R. L. Soto, H. Rojo, Tin Yau Tam, “Eigenvalue localization for complex matrices”, Proyecciones, 11:1 (1992), 11–19 | MR | Zbl
[9] R. Kress, H. L. de Vries, R. Wegmann, “On nonnormal matrices”, Linear Algebra Appl., 8:2 (1974), 109–120 | DOI | MR | Zbl
[10] Bo Xun Tu, “A lower bound for the rank of a matrix and sufficient conditions for nonsingularity of a matrix. I”, Chinese, Fudan Xuebao, 21:4 (1982), 416–422 | MR
[11] R. Sharma, R. Kumar, “Remark on upper bounds for the spread of a matrix”, Linear Algebra Appl., 438:11 (2013), 4359–4362 | DOI | MR | Zbl
[12] H. Wolkowicz, G. P. H. Styan, “Bounds for eigenvalues using traces”, Linear Algebra Appl., 29 (1980), 471–506 | DOI | MR | Zbl
[13] H. Wolkowicz, G. P. H. Styan, “More bounds for eigenvalues using traces”, Linear Algebra Appl., 31 (1980), 1–17 | DOI | MR | Zbl
[14] J. L. Wu, “Distribution and estimation for eigenvalues of real quaternion matrices”, Comput. Math. Appl., 55:9 (2008), 1998–2004 | DOI | MR | Zbl
[15] Junliang Wu, Limin Zou, Xiangping Chen, Shengjie Li, “The estimation of eigenvalues of sum, difference, and tensor product of matrices over quaternion division algebra”, Linear Algebra Appl., 428:11-12 (2008), 3023–3033 | DOI | MR | Zbl
[16] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | MR | Zbl | Zbl
[17] R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge Univ. Press, Cambridge, 1991, viii+607 pp. | DOI | MR | Zbl
[18] R. S. Varga, Geršgorin and his circles, Springer Ser. Comput. Math., 36, Springer-Verlag, Berlin, 2004, x+226 pp. | DOI | MR | Zbl