On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 109-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebraic number field $K$ such that a prime $\ell$ splits completely in $K$, we define a regulator $\mathfrak R_\ell(K)\in\mathbb Z_\ell$ that characterizes the subgroup of universal norms from the cyclotomic $\mathbb Z_\ell$-extension of $K$ in the completed group of $S$-units of $K$, where $S$ consists of all prime divisors of $\ell$. We prove that the inequality $\mathfrak R_\ell(K)\ne0$ follows from the $\ell$-adic Schanuel conjecture and holds for some Abelian extensions of imaginary quadratic fields. We study the connection between the regulator $\mathfrak R_\ell(K)$ and the feeble conjecture on the $\ell$-adic regulator, and define analogues of the Gross regulator.
Keywords: $\ell$-adic regulator, $S$-units, global universal norm, Schanuel conjecture, Iwasawa theory.
@article{IM2_2015_79_1_a5,
     author = {L. V. Kuz'min},
     title = {On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)},
     journal = {Izvestiya. Mathematics },
     pages = {109--144},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a5/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 109
EP  - 144
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a5/
LA  - en
ID  - IM2_2015_79_1_a5
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)
%J Izvestiya. Mathematics 
%D 2015
%P 109-144
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a5/
%G en
%F IM2_2015_79_1_a5
L. V. Kuz'min. On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms). Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 109-144. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a5/

[1] L. V. Kuz'min, “Some remarks on the $l$-adic Dirichlet theorem and the $l$-adic regulator”, Math. USSR-Izv., 19:3 (1982), 445–478 | DOI | MR | Zbl

[2] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. V. Growth of the $\ell$-adic regulator in the cyclotomic $Z_\ell$-extension of an algebraic number field”, Izv. Math., 73:5 (2009), 959–1021 | DOI | DOI | MR | Zbl

[3] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl

[4] L. V. Kuz'min, “Some remarks on the $l$-adic regulator. II”, Math. USSR-Izv., 35:1 (1990), 113–144 | DOI | MR | Zbl

[5] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. IV”, Izv. Math., 64:2 (2000), 265–310 | DOI | DOI | MR | Zbl

[6] B. H. Gross, “$p$-adic $L$-series at $s=0$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 979–994 | MR | Zbl

[7] S. Lang, Cyclotomic fields. I, II, Grad. Texts in Math., 121, Combined 2nd ed., Springer-Verlag, New York, 1990, xviii+433 pp. | DOI | MR | Zbl

[8] A. Brumer, “On the units of algebraic number fields”, Mathematika, 14:2 (1967), 121–124 | DOI | MR | Zbl

[9] L. V. Kuz'min, “A new proof of some duality theorem on the $\ell$-adic logarithms of local units”, J. Math. Sci. (New York), 95:1 (1999), 1996–2005 | DOI | MR | Zbl