Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_1_a5, author = {L. V. Kuz'min}, title = {On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)}, journal = {Izvestiya. Mathematics }, pages = {109--144}, publisher = {mathdoc}, volume = {79}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a5/} }
TY - JOUR AU - L. V. Kuz'min TI - On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms) JO - Izvestiya. Mathematics PY - 2015 SP - 109 EP - 144 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a5/ LA - en ID - IM2_2015_79_1_a5 ER -
L. V. Kuz'min. On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms). Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 109-144. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a5/
[1] L. V. Kuz'min, “Some remarks on the $l$-adic Dirichlet theorem and the $l$-adic regulator”, Math. USSR-Izv., 19:3 (1982), 445–478 | DOI | MR | Zbl
[2] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. V. Growth of the $\ell$-adic regulator in the cyclotomic $Z_\ell$-extension of an algebraic number field”, Izv. Math., 73:5 (2009), 959–1021 | DOI | DOI | MR | Zbl
[3] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl
[4] L. V. Kuz'min, “Some remarks on the $l$-adic regulator. II”, Math. USSR-Izv., 35:1 (1990), 113–144 | DOI | MR | Zbl
[5] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. IV”, Izv. Math., 64:2 (2000), 265–310 | DOI | DOI | MR | Zbl
[6] B. H. Gross, “$p$-adic $L$-series at $s=0$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 979–994 | MR | Zbl
[7] S. Lang, Cyclotomic fields. I, II, Grad. Texts in Math., 121, Combined 2nd ed., Springer-Verlag, New York, 1990, xviii+433 pp. | DOI | MR | Zbl
[8] A. Brumer, “On the units of algebraic number fields”, Mathematika, 14:2 (1967), 121–124 | DOI | MR | Zbl
[9] L. V. Kuz'min, “A new proof of some duality theorem on the $\ell$-adic logarithms of local units”, J. Math. Sci. (New York), 95:1 (1999), 1996–2005 | DOI | MR | Zbl