The Dirichlet problem on two-dimensional stratified sets
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 74-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for harmonic functions on two-dimensional stratified sets, which are assumed for simplicity to be complexes. We show that under certain conditions this problem is Fredholm in the Hölder space and in weighted Hölder spaces of functions satisfying the Hölder condition outside any neighbourhood of the vertex set of the complex and admitting power singularities. We also study the power-logarithmic asymptotics of solutions at these vertices.
Keywords: Dirichlet problem, two-dimensional complex, harmonic functions, Fredholm property, weighted Hölder space, power-logarithmic asymptotics.
Mots-clés : index, end symbol
@article{IM2_2015_79_1_a4,
     author = {L. A. Kovaleva and A. P. Soldatov},
     title = {The {Dirichlet} problem on two-dimensional stratified sets},
     journal = {Izvestiya. Mathematics },
     pages = {74--108},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/}
}
TY  - JOUR
AU  - L. A. Kovaleva
AU  - A. P. Soldatov
TI  - The Dirichlet problem on two-dimensional stratified sets
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 74
EP  - 108
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/
LA  - en
ID  - IM2_2015_79_1_a4
ER  - 
%0 Journal Article
%A L. A. Kovaleva
%A A. P. Soldatov
%T The Dirichlet problem on two-dimensional stratified sets
%J Izvestiya. Mathematics 
%D 2015
%P 74-108
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/
%G en
%F IM2_2015_79_1_a4
L. A. Kovaleva; A. P. Soldatov. The Dirichlet problem on two-dimensional stratified sets. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 74-108. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/

[1] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp. | MR | Zbl

[2] S. Nicaise, O. M. Penkin, “Poincaré–Perron's method for the Dirichlet problem on stratified sets”, J. Math. Anal. Appl., 296:2 (2004), 504–520 | DOI | MR | Zbl

[3] O. M. Penkin, “About a geometrical approach to multistructures and some qualitative properties of solutions”, Partial differential equations on multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., 219, Dekker, New York, 2001, 183–191 | MR | Zbl

[4] O. M. Penkin, “Second-order elliptic equations on a stratified set”, J. Math. Sci. (N. Y.), 119:6 (2004), 836–867 | DOI | MR | Zbl

[5] A. A. Gavrilov, S. Nicaise, O. M. Penkin, “Poincaré's inequality on stratified sets and applications”, Evolution equations: applications to physics, industry, life sciences and economics (Levico Terme, 2000), Progr. Nonlinear Differential Equations Appl., 55, Birkhäuser, Basel, 2003, 195–213 | MR | Zbl

[6] A. P. Soldatov, Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vysshaya shkola, M., 1991, 208 pp. | MR | Zbl

[7] A. P. Soldatov, “A general boundary value problem of function theory”, Soviet Math. Dokl., 37:2 (1988), 486–489 | MR | Zbl

[8] L. A. Kovaleva, A. P. Soldatov, “On a nonlocal problem in function theory”, Differ. Equ., 46:3 (2010), 400–414 | DOI | MR | Zbl

[9] A. P. Soldatov, “Nelokalnaya kraevaya zadacha Rimana teorii funktsii”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 2011, no. 5(100), vyp. 22, 122–132

[10] N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, P. Noordhoff N. V., Groningen, 1953, vi+447 pp. | MR | MR | Zbl | Zbl

[11] A. P. Soldatov, Kpaevye zadachi teopii funktsii v oblastyakh s kusochno gladkoi gpanitsei, Ch. II, Izd-vo TGU, In-t ppikl. matem. im. I. H. Vekua, Tbilisi, 1991, 276 pp. | MR | Zbl

[12] R. S. Palais, Seminar on the Atiyah–Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih, R. Solovay, Ann. of Math. Stud., 57, Princeton Univ. Press, Princeton, N.J., 1965, x+366 pp. | MR | MR | Zbl | Zbl