Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_1_a4, author = {L. A. Kovaleva and A. P. Soldatov}, title = {The {Dirichlet} problem on two-dimensional stratified sets}, journal = {Izvestiya. Mathematics }, pages = {74--108}, publisher = {mathdoc}, volume = {79}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/} }
L. A. Kovaleva; A. P. Soldatov. The Dirichlet problem on two-dimensional stratified sets. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 74-108. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/
[1] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp. | MR | Zbl
[2] S. Nicaise, O. M. Penkin, “Poincaré–Perron's method for the Dirichlet problem on stratified sets”, J. Math. Anal. Appl., 296:2 (2004), 504–520 | DOI | MR | Zbl
[3] O. M. Penkin, “About a geometrical approach to multistructures and some qualitative properties of solutions”, Partial differential equations on multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., 219, Dekker, New York, 2001, 183–191 | MR | Zbl
[4] O. M. Penkin, “Second-order elliptic equations on a stratified set”, J. Math. Sci. (N. Y.), 119:6 (2004), 836–867 | DOI | MR | Zbl
[5] A. A. Gavrilov, S. Nicaise, O. M. Penkin, “Poincaré's inequality on stratified sets and applications”, Evolution equations: applications to physics, industry, life sciences and economics (Levico Terme, 2000), Progr. Nonlinear Differential Equations Appl., 55, Birkhäuser, Basel, 2003, 195–213 | MR | Zbl
[6] A. P. Soldatov, Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vysshaya shkola, M., 1991, 208 pp. | MR | Zbl
[7] A. P. Soldatov, “A general boundary value problem of function theory”, Soviet Math. Dokl., 37:2 (1988), 486–489 | MR | Zbl
[8] L. A. Kovaleva, A. P. Soldatov, “On a nonlocal problem in function theory”, Differ. Equ., 46:3 (2010), 400–414 | DOI | MR | Zbl
[9] A. P. Soldatov, “Nelokalnaya kraevaya zadacha Rimana teorii funktsii”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 2011, no. 5(100), vyp. 22, 122–132
[10] N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, P. Noordhoff N. V., Groningen, 1953, vi+447 pp. | MR | MR | Zbl | Zbl
[11] A. P. Soldatov, Kpaevye zadachi teopii funktsii v oblastyakh s kusochno gladkoi gpanitsei, Ch. II, Izd-vo TGU, In-t ppikl. matem. im. I. H. Vekua, Tbilisi, 1991, 276 pp. | MR | Zbl
[12] R. S. Palais, Seminar on the Atiyah–Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih, R. Solovay, Ann. of Math. Stud., 57, Princeton Univ. Press, Princeton, N.J., 1965, x+366 pp. | MR | MR | Zbl | Zbl