The Dirichlet problem on two-dimensional stratified sets
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 74-108
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Dirichlet problem for
harmonic functions on two-dimensional
stratified sets, which are assumed for
simplicity to be complexes. We show that
under certain conditions this problem is
Fredholm in the Hölder space and
in weighted Hölder spaces of functions
satisfying the Hölder condition outside
any neighbourhood of the vertex set
of the complex and admitting power singularities.
We also study the power-logarithmic asymptotics
of solutions at these vertices.
Keywords:
Dirichlet problem, two-dimensional complex, harmonic functions, Fredholm property, weighted Hölder space, power-logarithmic asymptotics.
Mots-clés : index, end symbol
Mots-clés : index, end symbol
@article{IM2_2015_79_1_a4,
author = {L. A. Kovaleva and A. P. Soldatov},
title = {The {Dirichlet} problem on two-dimensional stratified sets},
journal = {Izvestiya. Mathematics },
pages = {74--108},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/}
}
L. A. Kovaleva; A. P. Soldatov. The Dirichlet problem on two-dimensional stratified sets. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 74-108. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a4/