A strengthening of Mahler's transference theorem
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new transference theorems that improve some classical theorems of Mahler. Our results are stated in terms of consecutive minima of pseudo-compound parallelepipeds.
Keywords: transference principle, consecutive minima, pseudo-compound parallelepipeds, dual lattices.
@article{IM2_2015_79_1_a3,
     author = {O. N. German and K. G. Evdokimov},
     title = {A strengthening of {Mahler's} transference theorem},
     journal = {Izvestiya. Mathematics },
     pages = {60--73},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a3/}
}
TY  - JOUR
AU  - O. N. German
AU  - K. G. Evdokimov
TI  - A strengthening of Mahler's transference theorem
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 60
EP  - 73
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a3/
LA  - en
ID  - IM2_2015_79_1_a3
ER  - 
%0 Journal Article
%A O. N. German
%A K. G. Evdokimov
%T A strengthening of Mahler's transference theorem
%J Izvestiya. Mathematics 
%D 2015
%P 60-73
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a3/
%G en
%F IM2_2015_79_1_a3
O. N. German; K. G. Evdokimov. A strengthening of Mahler's transference theorem. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a3/

[1] K. Mahler, “Ein Übertragungsprinzip für lineare Ungleichungen”, Časopis Pešt. Mat. Fys., 68 (1939), 85–92 | MR | Zbl

[2] K. Mahler, “Ein Übertragungsprinzip für konvexe Körper”, Časopis Pešt. Mat. Fys., 68 (1939), 93–102 | MR | Zbl

[3] A. Ya. Khintchine, “Über eine Klasse linearer Diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50:2 (1926), 170–195 | DOI | Zbl

[4] O. N. German, “Transference inequalities for multiplicative Diophantine exponents”, Klassicheskaya i sovremennaya matematika v pole deyatelnosti B. N. Delone, Sbornik statei. K 120-letiyu so dnya rozhdeniya chlena-korrespondenta AN SSSR B. N. Delone, Tr. MIAN, 275, MAIK, M., 2011, 227–239 | MR | Zbl

[5] O. N. German, “On Diophantine exponents and Khintchine's transference principle”, Mosc. J. Comb. Number Theory, 2:2 (2012), 22–51 ; arXiv: 1004.4933 | MR | Zbl

[6] O. N. German, “Intermediate Diophantine exponents and parametric geometry of numbers”, Acta Arith., 154:1 (2012), 79–101 | DOI | MR | Zbl

[7] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer-Verlag, Berlin, 1980, x+299 pp. | MR | Zbl

[8] E. Lutwak, “Intersection bodies and dual mixed volumes”, Adv. in Math., 71:2 (1988), 232–261 | DOI | MR | Zbl

[9] H. Busemann, “A theorem on convex bodies of the Brunn–Minkowski type”, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 27–31 | DOI | MR | Zbl

[10] J. D. Vaaler, “A geometric inequality with applications to linear forms”, Pacific J. Math., 83:2 (1979), 543–553 | DOI | MR | Zbl

[11] K. Ball, “Volumes of sections of cubes and related problems”, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., 1376, Springer, Berlin, 1989, 251–260 | DOI | MR | Zbl