Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1232-1243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-linear almost periodic differential-difference equations having solutions with precompact sets of values. We obtain conditions for such solutions to be almost periodic.
Keywords: almost periodic solutions, non-linear differential-difference equations, non-linear almost periodic equations.
@article{IM2_2014_78_6_a9,
     author = {V. E. Slyusarchuk},
     title = {Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations},
     journal = {Izvestiya. Mathematics },
     pages = {1232--1243},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a9/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1232
EP  - 1243
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a9/
LA  - en
ID  - IM2_2014_78_6_a9
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations
%J Izvestiya. Mathematics 
%D 2014
%P 1232-1243
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a9/
%G en
%F IM2_2014_78_6_a9
V. E. Slyusarchuk. Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1232-1243. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a9/

[1] S. Bochner, “Beiträge zur Theorie der fastperiodischen Funktionen. I. Funktionen einer Variablen”, Math. Ann., 96:1 (1927), 119–147 | DOI | MR | Zbl

[2] S. Bochner, “Beiträge zur Theorie der fastperiodischen Funktionen. II. Funktionen mehrerer Variablen”, Math. Ann., 96:1 (1927), 383–409 | DOI | MR | Zbl

[3] B. M. Levitan, Pochti periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl

[4] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl

[5] V. E. Slyusarchuk, “Invertibility of almost periodic $c$-continuous functional operators”, Math. USSR-Sb., 44:4 (1983), 431–446 | DOI | MR | Zbl

[6] V. Yu. Slyusarchuk, “Conditions for the almost periodicity of bounded solutions of nonlinear difference equations with continuous argument”, J. Math. Sci. (N. Y.), 197:1 (2014), 122–128 | MR

[7] V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear differential equations in Banach spaces”, Ukrainian Math. J., 65:2 (2013), 341–347 | DOI | MR | Zbl

[8] L. Amerio, “Soluzioni quasiperiodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o limitati”, Ann. Mat. Pura Appl. (4), 39:1 (1955), 97–119 | DOI | MR | Zbl

[9] J. Favard, “Sur les équations différentielles linéaires à coefficients presque-périodiques”, Acta Math., 51:1 (1928), 31–81 | DOI | Zbl

[10] É. Mukhamadiev, “On the inversion of functional operators in a space of functions bounded on the axes”, Math. Notes, 11:3 (1972), 169–172 | DOI | MR | Zbl

[11] È. Mukhamadiev, “Investigations in the theory of bounded and periodic solutions of differential equations”, Math. Notes, 30:3 (1981), 713–722 | DOI | MR | Zbl

[12] V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Math. USSR-Sb., 58:1 (1987), 83–100 | DOI | MR | Zbl

[13] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of nonautonomous functional-differential operators”, Math. Notes, 42:2 (1987), 648–651 | DOI | MR | Zbl

[14] L. Amerio, “Sulle equazioni differenziali quasi-periodiche astratte”, Ricerche Mat., 9 (1960), 255–274 | MR | Zbl

[15] V. V. Zhikov, “Proof of the Favard theorem on the existence of almost-periodic solution for an arbitrary Banach space”, Math. Notes, 23:1 (1978), 66–69 | DOI | MR | Zbl

[16] V. Yu. Slyusarchuk, “Method of local linear approximation in the theory of bounded solutions of nonlinear differential equations”, Ukrainian Math. J., 61:11 (2009), 1809–1829 | DOI | MR | Zbl

[17] V. Yu. Slyusarchuk, “Method of local linear approximation of nonlinear differential operators by weakly regular operators”, Ukrainian Math. J., 63:12 (2012), 1916–1932 | DOI | MR | Zbl

[18] V. E. Slyusarchuk, “The method of local linear approximation in the theory of nonlinear functional-differential equations”, Sb. Math., 201:8 (2010), 1193–1215 | DOI | DOI | MR | Zbl

[19] V. E. Slyusarchuk, “Bounded and periodic solutions of nonlinear functional differential equations”, Sb. Math., 203:5 (2012), 743–767 | DOI | DOI | MR | Zbl