General Franklin system as a~basis in~$B^1[0,1]$
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1120-1137.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a general Franklin system $\{f_n\}_{n=0}^{\infty}$ generated by an admissible sequence $\mathcal T$, we obtain necessary and sufficient conditions on $\mathcal T$ under which the corresponding system is a basis or an unconditional basis in $B^1[0,1]$.
Keywords: general Franklin system, basis, unconditional basis, spaces $B^1$, $H^1$.
@article{IM2_2014_78_6_a4,
     author = {G. G. Gevorkyan},
     title = {General {Franklin} system as a~basis in~$B^1[0,1]$},
     journal = {Izvestiya. Mathematics },
     pages = {1120--1137},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a4/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - General Franklin system as a~basis in~$B^1[0,1]$
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1120
EP  - 1137
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a4/
LA  - en
ID  - IM2_2014_78_6_a4
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T General Franklin system as a~basis in~$B^1[0,1]$
%J Izvestiya. Mathematics 
%D 2014
%P 1120-1137
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a4/
%G en
%F IM2_2014_78_6_a4
G. G. Gevorkyan. General Franklin system as a~basis in~$B^1[0,1]$. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1120-1137. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a4/

[1] G. S. De Souza, “Spaces formed by special atoms. I”, Rocky Mountain J. Math., 14:2 (1984), 423–432 | DOI | MR | Zbl

[2] G. S. De Souza, Spaces formed by special atoms, Ph. D. Dissertation, SUNY at Albany, New York, 1980

[3] R. R. Coifman, “A real variable characterization of $H^{p}$”, Studia Math., 51 (1974), 269–274 | MR | Zbl

[4] G. S. De Souza, G. Sampson, “A real characterization of the pre-dual of Bloch functions”, J. London Math. Soc. (2), 27:2 (1983), 267–276 | DOI | MR | Zbl

[5] Z. Ciesielski, A. Kamont, “Projections onto piecewise linear functions”, Funct. Approx. Comment. Math., 25 (1997), 129–143 | MR | Zbl

[6] M. P. Pogosyan, K. A. Keryan, “General Franklin periodic system as a basis in $H^1[0,1]$”, J. Contemp. Math. Anal., 40:1 (2005), 56–79 | MR

[7] Ph. Franklin, “A set of continuos orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 | DOI | MR | Zbl

[8] G. G. Gevorkyan, A. Kamont, “General Franklin systems as bases in $H^1[0,1]$”, Studia Math., 167:3 (2005), 259–292 | DOI | MR | Zbl

[9] G. G. Gevorkyan, A. Kamont, “Unconditionality of general Franklin systems in $L^p[0,1]$, $1

\infty$”, Studia Math., 164:2 (2004), 161–204 | DOI | MR | Zbl

[10] K. A. Keryan, “The unconditional basis property of Franklin general periodic system in $L^p[0,1]$, $1

\infty$”, J. Contemp. Math. Anal., 40:1 (2005), 15–55 | MR

[11] S. V. Bochkarev, “Some inequalities for Franklin series”, Anal. Math., 1:4 (1975), 249–257 | DOI | MR | Zbl

[12] G. G. Gevorkyan, A. Kamont, “On general Franklin systems”, Dissertationes Math. (Rozprawy Mat.), 374, Polish Acad. Sci. Inst. Math., Warsaw, 1998, 59 pp. | MR | Zbl

[13] Z. Ciesielski, “Orthogonal projections onto spline spaces with arbitrary knots”, Function spaces (Poznań, 1998), Lecture Notes in Pure and Appl. Math., 213, Dekker, New York, 2000, 133–140 | MR | Zbl

[14] P. Wojtaszczyk, “Two remarks on the Franklin system”, Proc. Edinburgh Math. Soc. (2), 29:3 (1986), 329–333 | DOI | MR | Zbl

[15] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[16] G. G. Gevorkyan, “Ob absolyutnoi skhodimosti ryadov po obschei sisteme Franklina”, Izv. NAN Armenii: Matematika, 49:2 (2014), 3–22