Some special series in ultraspherical polynomials and their approximation properties
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 1036-1059.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the explicit form of a limiting ultraspherical series $\sum_{k=0}^\infty f_k^{-1}\widehat P_k^{-1}(x)$, which was established by us in [1], we consider new, more general, special series in ultraspherical Jacobi polynomials and their approximation properties. We show that as an approximation tool, these series compare favourably with Fourier series in Jacobi polynomials. At the same time, they admit a simple construction, which in important particular cases enables one to use the fast Fourier transform for the numerical realization of their partial sums.
Keywords: special series in ultraspherical polynomials, approximation by partial sums of special series.
Mots-clés : Jacobi polynomial
@article{IM2_2014_78_5_a8,
     author = {I. I. Sharapudinov},
     title = {Some special series in ultraspherical polynomials and their approximation properties},
     journal = {Izvestiya. Mathematics },
     pages = {1036--1059},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a8/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Some special series in ultraspherical polynomials and their approximation properties
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1036
EP  - 1059
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a8/
LA  - en
ID  - IM2_2014_78_5_a8
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Some special series in ultraspherical polynomials and their approximation properties
%J Izvestiya. Mathematics 
%D 2014
%P 1036-1059
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a8/
%G en
%F IM2_2014_78_5_a8
I. I. Sharapudinov. Some special series in ultraspherical polynomials and their approximation properties. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 1036-1059. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a8/

[1] I. I. Sharapudinov, “Limit ultraspherical series and their approximation properties”, Math. Notes, 94:2 (2013), 281–293 | DOI | DOI | Zbl

[2] F. F. Dedus, S. A. Makhortykh, M. N. Ustinin, A. F. Dedus, Obobschennyi spektralno-analiticheskii metod obrabotki informatsionnykh massivov. Zadachi analiza izobrazhenii i raspoznavaniya obrazov, Mashinostroenie, M., 1999, 356 pp.

[3] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | Zbl | Zbl

[4] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “O vychislenii koeffitsientov ryadov Chebysheva dlya reshenii obyknovennykh differentsialnykh uravnenii”, Sib. elektron. matem. izv., 8 (2011), 273–283 | MR

[5] L. N. Trefethen, Spectral methods in MATLAB, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl

[6] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations, Cornell University, Ithaca, NY, 1996, 300 pp.

[7] R. Mukundan, K. R. Ramakrishnan, Moment functions in image analysis. Theory and applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998, xiv+150 pp. | MR | Zbl

[8] H. S. Malvar, Signal processing with lapped transforms, Artech House, Boston, MA, 1992, xvi+357 pp. | Zbl

[9] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, R.I., 1959, ix+421 pp. | MR | Zbl | Zbl

[10] V. M. Badkov, “Estimates of Lebesgue functions and remainders of Fourier–Jacobi series”, Siberian Math. J., 9:6 (1969), 947–962 | DOI | MR | Zbl

[11] I. P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin, 1955, xiv+515 pp. | MR | MR | Zbl | Zbl