Alternative algebras admitting derivations with invertible values and invertible derivations
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 922-936.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of the Bergen–Herstein–Lanski theorem for alternative algebras: describe all alternative algebras that admit derivations with invertible values. We also prove an analogue of Moens' theorem for alternative algebras (a finite-dimensional alternative algebra over a field of characteristic zero is nilpotent if and only if it admits an invertible Leibniz derivation).
Keywords: derivation, alternative algebra, nilpotent algebra.
@article{IM2_2014_78_5_a3,
     author = {I. B. Kaygorodov and Yu. S. Popov},
     title = {Alternative algebras admitting derivations with invertible values and invertible derivations},
     journal = {Izvestiya. Mathematics },
     pages = {922--936},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a3/}
}
TY  - JOUR
AU  - I. B. Kaygorodov
AU  - Yu. S. Popov
TI  - Alternative algebras admitting derivations with invertible values and invertible derivations
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 922
EP  - 936
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a3/
LA  - en
ID  - IM2_2014_78_5_a3
ER  - 
%0 Journal Article
%A I. B. Kaygorodov
%A Yu. S. Popov
%T Alternative algebras admitting derivations with invertible values and invertible derivations
%J Izvestiya. Mathematics 
%D 2014
%P 922-936
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a3/
%G en
%F IM2_2014_78_5_a3
I. B. Kaygorodov; Yu. S. Popov. Alternative algebras admitting derivations with invertible values and invertible derivations. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 922-936. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a3/

[1] J. Bergen, I. N. Herstein, C. Lanski, “Derivations with invertible values”, Canad. J. Math., 35:2 (1983), 300–310 | DOI | MR | Zbl

[2] A. Giambruno, P. Misso, F. C. Polcino Milies, “Derivations with invertible values in rings with involution”, Pacific J. Math., 123:1 (1986), 47–54 | DOI | MR | Zbl

[3] J. Bergen, L. Carini, “Derivations with invertible values on a Lie ideal”, Canad. Math. Bull., 31:1 (1988), 103–110 | DOI | MR | Zbl

[4] Jui Chi Chang, “$\alpha$-derivations with invertible values”, Bull. Inst. Math. Acad. Sinica, 13:4 (1985), 323–333 | MR | Zbl

[5] M. Hongan, H. Komatsu, “$(\sigma,\tau)$-derivations with invertible values”, Bull. Inst. Math. Acad. Sinica, 15:4 (1987), 411–415 | MR | Zbl

[6] H. Komatsu, A. Nakajima, “Generalized derivations with invertible values”, Comm. Algebra, 32:5 (2004), 1937–1944 | DOI | MR | Zbl

[7] N. Jacobson, “A note on automorphisms and derivations of Lie algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 281–283 | DOI | MR | Zbl

[8] I. Bajo, “Lie algebras admitting non-singular pre-derivations”, Indag. Math. (N.S.), 8:4 (1997), 433–437 | DOI | MR | Zbl

[9] W. A. Moens, “A characterisation of nilpotent Lie algebras by invertible Leibniz-derivations”, Comm. Algebra, 41:7 (2013), 2427–2440 | DOI | MR | Zbl

[10] A. A. Popov, “Differentiably simple alternative algebras”, Algebra and Logic, 49:5 (2010), 456–469 | DOI | MR | Zbl

[11] A. A. Popov, “Differentiably simple Jordan algebras”, Siberian Math. J., 54:4 (2013), 713–721 | DOI | MR | Zbl

[12] V. T. Filippov, “On $\delta$-derivations of prime alternative and Malcev algebras”, Algebra and Logic, 39:5 (2000), 354–358 | DOI | MR | Zbl

[13] I. B. Kaygorodov, “On $\delta$-derivations of simple finite-dimensional Jordan superalgebras”, Algebra and Logic, 46:5 (2007), 318–329 | DOI | MR | Zbl

[14] I. B. Kaygorodov, “$\delta$-superderivations of simple finite-dimensional Jordan and Lie superalgebras”, Algebra and Logic, 49:2 (2010), 130–144 | DOI | MR | Zbl

[15] A. I. Shestakov, “Ternary derivations of separable associative and Jordan algebras”, Siberian Math. J., 53:5 (2012), 943–956 | DOI | MR | Zbl

[16] A. Shestakov, Ternary superderivations of Jordan superalgebras, arXiv: 1309.7299

[17] V. N. Zhelyabin, I. B. Kaygorodov, “On $\delta$-superderivations of simple superalgebras of Jordan brackets”, St.-Peterburg Math. J., 23:4 (2012), 665–677 | DOI | MR | Zbl

[18] I. B. Kaygorodov, “$\delta$-superderivations of semisimple finite-dimensional Jordan superalgebras”, Math. Notes, 91:2 (2012), 187–197 | DOI | DOI | Zbl

[19] I. Kaygorodov, E. Okhapkina, “$\delta$-derivations of semisimple finite-dimensional structurable algebras”, J. Algebra Appl., 13:4 (2014), 1350130, 12 pp. | DOI | MR | Zbl

[20] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Pure Appl. Math., 104, Academic Press, Inc., New York–London, 1982, xi+371 pp. | MR | MR | Zbl | Zbl

[21] A. Elduque, “On triality and automorphisms and derivations of composition algebras”, Linear Algebra Appl., 314:1-3 (2000), 49–74 | DOI | MR | Zbl

[22] S. M. Gagola, “Maximal subalgebras of the octonions”, J. Pure Appl. Algebra, 217:1 (2013), 20–21 | DOI | MR | Zbl

[23] J. Dixmier, W. G. Lister, “Derivations of nilpotent Lie algebras”, Proc. Amer. Math. Soc., 8:1 (1957), 155–158 | DOI | MR | Zbl

[24] D. Burde, “Lie algebra prederivations and strongly nilpotent Lie algebras”, Comm. Algebra, 30:7 (2002), 3157–3175 | DOI | MR | Zbl

[25] A. Fialowski, A. Kh. Khudoyberdiyev, B. A. Omirov, “A characterization of nilpotent Leibniz algebras”, Algebr. Represent. Theory, 16:5 (2013), 1489–1505 | DOI | MR | Zbl

[26] M. P. Williams, “Nilpotent $n$-Lie algebras”, Comm. Algebra, 37:6 (2009), 1843–1849 | DOI | MR | Zbl

[27] A. M. Slin'ko, “Remark on radicals and differentiation of rings”, Siberian Math. J., 13:6 (1972), 984–986 | DOI | MR | Zbl

[28] M. I. Badalov, “Nilpotent alternative algebras”, Algebra and Logic, 23:3 (1984), 167–181 | DOI | MR | Zbl