Action of the complex Monge--Amp\`ere operator on piecewise-linear functions and exponential tropical varieties
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 902-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider exponential tropical varieties, which appear as analogues of algebraic tropical varieties when we pass from algebraic varieties to varieties given by zero sets of systems of exponential sums. We describe a construction of exponential tropical varieties arising from the action of the complex Monge–Ampère operator on piecewise-linear functions and show that every such variety can be obtained in this way. As an application, we deduce a criterion for the vanishing of the value of the mixed Monge–Ampère operator. This is an analogue and generalization of the criterion for the vanishing of the mixed volume of convex bodies.
Keywords: piecewise-linear function, Monge–Ampère operator, exponential tropical variety.
@article{IM2_2014_78_5_a2,
     author = {B. Ya. Kazarnovskii},
     title = {Action of the complex {Monge--Amp\`ere} operator on piecewise-linear functions and exponential tropical varieties},
     journal = {Izvestiya. Mathematics },
     pages = {902--921},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a2/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - Action of the complex Monge--Amp\`ere operator on piecewise-linear functions and exponential tropical varieties
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 902
EP  - 921
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a2/
LA  - en
ID  - IM2_2014_78_5_a2
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T Action of the complex Monge--Amp\`ere operator on piecewise-linear functions and exponential tropical varieties
%J Izvestiya. Mathematics 
%D 2014
%P 902-921
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a2/
%G en
%F IM2_2014_78_5_a2
B. Ya. Kazarnovskii. Action of the complex Monge--Amp\`ere operator on piecewise-linear functions and exponential tropical varieties. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 902-921. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a2/

[1] C. De Concini, “Equivariant embeddings of homogeneous spaces”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 369–377 | MR | Zbl

[2] B. Ya. Kazarnovskij, “On the zeros of exponential sums”, Soviet Math. Dokl., 23 (1981), 347–351 | MR | Zbl

[3] B. Ya. Kazarnovskii, “On the action of the complex Monge–Ampère operator on piecewise linear functions”, Funct. Anal. Appl., 48:1 (2014), 15–23 | DOI | DOI

[4] A. Esterov, “Tropical varieties with polynomial weights and corner loci of piecewise polynomials”, Mosc. Math. J., 12:1 (2012), 55–76 | MR | Zbl

[5] E. Bedford, B. A. Taylor, “The Dirichlet problem for a complex Monge–Ampère equation”, Invent. Math., 37:1 (1976), 1–44 | DOI | MR | Zbl

[6] B. Kazarnovskii, On piecewise pluriharmonic functions, arXiv: 1206.3741

[7] B. Ya. Kazarnovskii, “c-fans and Newton polyhedra of algebraic varieties”, Izv. Math., 67:3 (2003), 439–460 | DOI | DOI | MR | Zbl

[8] B. Ya. Kazarnovskii, “Newton polyhedra and zeros of systems of exponential sums”, Funct. Anal. Appl., 18:4 (1984), 299–307 | DOI | MR | Zbl

[9] H. Minkowski, “Theorie der konvexen Körpern, insbesonder der Begründung ihres Oberflächenbegriffs”, Gesammelte Abhandlungen, v. 2, B. G. Teubner, Leipzig–Berlin, 1911, 131–229 | Zbl

[10] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical algebraic geometry, Oberwolfach Semin., 35, 2nd ed., Birkhäuser Verlag, Basel, 2009, x+104 pp. | DOI | MR | Zbl

[11] B. Ya. Kazarnovskii, “Multiplicative intersection theory and complex tropical varieties”, Izv. Math., 71:4 (2007), 673–720 | DOI | DOI | MR | Zbl