Boundedness of integral operators in weighted Sobolev spaces
Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 836-853

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain criteria for some classes of integral operators of Volterra type to be bounded operators from one weighted Sobolev space into another weighted Sobolev space.
Keywords: integral operators, weighted Lebesgue space, weighted Sobolev space, boundedness.
@article{IM2_2014_78_4_a6,
     author = {R. Oinarov},
     title = {Boundedness of integral operators in weighted {Sobolev} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {836--853},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/}
}
TY  - JOUR
AU  - R. Oinarov
TI  - Boundedness of integral operators in weighted Sobolev spaces
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 836
EP  - 853
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/
LA  - en
ID  - IM2_2014_78_4_a6
ER  - 
%0 Journal Article
%A R. Oinarov
%T Boundedness of integral operators in weighted Sobolev spaces
%J Izvestiya. Mathematics 
%D 2014
%P 836-853
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/
%G en
%F IM2_2014_78_4_a6
R. Oinarov. Boundedness of integral operators in weighted Sobolev spaces. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 836-853. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/