Boundedness of integral operators in weighted Sobolev spaces
Izvestiya. Mathematics, Tome 78 (2014) no. 4, pp. 836-853 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain criteria for some classes of integral operators of Volterra type to be bounded operators from one weighted Sobolev space into another weighted Sobolev space.
Keywords: integral operators, weighted Lebesgue space, weighted Sobolev space, boundedness.
@article{IM2_2014_78_4_a6,
     author = {R. Oinarov},
     title = {Boundedness of integral operators in weighted {Sobolev} spaces},
     journal = {Izvestiya. Mathematics},
     pages = {836--853},
     year = {2014},
     volume = {78},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/}
}
TY  - JOUR
AU  - R. Oinarov
TI  - Boundedness of integral operators in weighted Sobolev spaces
JO  - Izvestiya. Mathematics
PY  - 2014
SP  - 836
EP  - 853
VL  - 78
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/
LA  - en
ID  - IM2_2014_78_4_a6
ER  - 
%0 Journal Article
%A R. Oinarov
%T Boundedness of integral operators in weighted Sobolev spaces
%J Izvestiya. Mathematics
%D 2014
%P 836-853
%V 78
%N 4
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/
%G en
%F IM2_2014_78_4_a6
R. Oinarov. Boundedness of integral operators in weighted Sobolev spaces. Izvestiya. Mathematics, Tome 78 (2014) no. 4, pp. 836-853. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/

[1] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J., 48:5 (2007), 884–896 | DOI | MR | Zbl

[2] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl

[3] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, xviii+357 pp. | MR | Zbl

[4] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plseň, 2007, 162 pp. | MR | Zbl

[5] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10–11 (2011), 1021–1038 | DOI | MR | Zbl

[6] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl

[7] R. Oinarov, “Reversion of Hölder type inequalities for sums of weighted norms and additive weighted estimates of integral operators”, Math. Inequal. Appl., 6:3 (2003), 421–436 | DOI | MR | Zbl

[8] I. P. Natanson, Theory of functions of a real variable, v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961, 277 pp., 265 pp. | MR | MR | MR | Zbl

[9] R. Oǐnarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Siberian Math. J., 52:6 (2011), 1042–1055 | DOI | MR | Zbl