Boundedness of integral operators in weighted Sobolev spaces
Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 836-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain criteria for some classes of integral operators of Volterra type to be bounded operators from one weighted Sobolev space into another weighted Sobolev space.
Keywords: integral operators, weighted Lebesgue space, weighted Sobolev space, boundedness.
@article{IM2_2014_78_4_a6,
     author = {R. Oinarov},
     title = {Boundedness of integral operators in weighted {Sobolev} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {836--853},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/}
}
TY  - JOUR
AU  - R. Oinarov
TI  - Boundedness of integral operators in weighted Sobolev spaces
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 836
EP  - 853
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/
LA  - en
ID  - IM2_2014_78_4_a6
ER  - 
%0 Journal Article
%A R. Oinarov
%T Boundedness of integral operators in weighted Sobolev spaces
%J Izvestiya. Mathematics 
%D 2014
%P 836-853
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/
%G en
%F IM2_2014_78_4_a6
R. Oinarov. Boundedness of integral operators in weighted Sobolev spaces. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 836-853. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/

[1] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J., 48:5 (2007), 884–896 | DOI | MR | Zbl

[2] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl

[3] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, xviii+357 pp. | MR | Zbl

[4] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plseň, 2007, 162 pp. | MR | Zbl

[5] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10–11 (2011), 1021–1038 | DOI | MR | Zbl

[6] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl

[7] R. Oinarov, “Reversion of Hölder type inequalities for sums of weighted norms and additive weighted estimates of integral operators”, Math. Inequal. Appl., 6:3 (2003), 421–436 | DOI | MR | Zbl

[8] I. P. Natanson, Theory of functions of a real variable, v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961, 277 pp., 265 pp. | MR | MR | MR | Zbl

[9] R. Oǐnarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Siberian Math. J., 52:6 (2011), 1042–1055 | DOI | MR | Zbl