Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_4_a6, author = {R. Oinarov}, title = {Boundedness of integral operators in weighted {Sobolev} spaces}, journal = {Izvestiya. Mathematics }, pages = {836--853}, publisher = {mathdoc}, volume = {78}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/} }
R. Oinarov. Boundedness of integral operators in weighted Sobolev spaces. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 836-853. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a6/
[1] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J., 48:5 (2007), 884–896 | DOI | MR | Zbl
[2] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl
[3] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, xviii+357 pp. | MR | Zbl
[4] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plseň, 2007, 162 pp. | MR | Zbl
[5] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10–11 (2011), 1021–1038 | DOI | MR | Zbl
[6] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl
[7] R. Oinarov, “Reversion of Hölder type inequalities for sums of weighted norms and additive weighted estimates of integral operators”, Math. Inequal. Appl., 6:3 (2003), 421–436 | DOI | MR | Zbl
[8] I. P. Natanson, Theory of functions of a real variable, v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961, 277 pp., 265 pp. | MR | MR | MR | Zbl
[9] R. Oǐnarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Siberian Math. J., 52:6 (2011), 1042–1055 | DOI | MR | Zbl