On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain
Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 758-808.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-negative solutions of quasi-linear elliptic inequalities $\operatorname{div}A(x,Du)\geqslant0$ in $\Omega_{R_0,R_1}$, $0\leqslant R_0$, where $\Omega_{R_0,R_1}=\{x\in\Omega\colon R_0|x|$, $\Omega\subset{\mathbb R}^n$ ($n\geqslant2$) is a non-empty open set, and the function $A\colon\Omega_{R_0,R_1}\times{\mathbb R}^n\to{\mathbb R}^n$ satisfies the ellipticity conditions $C_1|\xi|^p\le\xi A(x,\xi)$, $|A(x,\xi)|\le C_2|\xi|^{p-1}$, $C_1,C_2>0$, $p>1$, for almost all $x\in\Omega_{R_0,R_1}$ and all $\xi\in{\mathbb R}^n$. Our bounds for solutions take the geometry of $\Omega$ into account.
Keywords: non-linear elliptic operators, unbounded domains, capacity.
@article{IM2_2014_78_4_a4,
     author = {A. A. Kon'kov},
     title = {On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain},
     journal = {Izvestiya. Mathematics },
     pages = {758--808},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 758
EP  - 808
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/
LA  - en
ID  - IM2_2014_78_4_a4
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain
%J Izvestiya. Mathematics 
%D 2014
%P 758-808
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/
%G en
%F IM2_2014_78_4_a4
A. A. Kon'kov. On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 758-808. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/

[1] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl

[2] V. Ferone, B. Messano, “Comparison results for nonlinear elliptic equations with lower-order terms”, Math. Nachr., 252:1 (2003), 43–50 | DOI | MR | Zbl

[3] J. B. Keller, “On solutions of $\Delta u=f(u)$”, Comm. Pure Appl. Math., 10:4 (1957), 503–510 | DOI | MR | Zbl

[4] A. A. Kon'kov, “Comparison theorems for elliptic inequalities with a non-linearity in the principal part”, J. Math. Anal. Appl., 325:2 (2007), 1013–1041 | DOI | MR | Zbl

[5] B. Messano, “Symmetrization results for classes of nonlinear elliptic equations with $q$-growth in the gradient”, Nonlinear Anal., 64:12 (2006), 2688–2703 | DOI | MR | Zbl

[6] R. Osserman, “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7:4 (1957), 1641–1647 | DOI | MR | Zbl

[7] L. Véron, “Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans ${\mathbf R}^n$”, Ann. Mat. Pura Appl. (4), 127:1 (1981), 25–50 | DOI | MR | Zbl

[8] V. A. Kondrat'ev, E. M. Landis, “On qualitative properties of solutions of a nonlinear equation of second order”, Math. USSR-Sb., 63:2 (1989), 337–350 | DOI | MR | Zbl

[9] V. G. Maz'ya, “The behavior near the boundary of solutions of the Dirichlet problem for a second-order elliptic equation in divergent form”, Math. Notes, 2:2 (1967), 610–617 | DOI | MR | Zbl

[10] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[11] I. I. Privalov, Subgarmonicheskie funktsii, ONTI NKTP SSSR, M.–L., 1937, 200 pp.

[12] S. G. Mikhlin, Lineinye uravneniya s chastnymi proizvodnymi, Vysshaya shkola, M., 1977, 431 pp. | MR

[13] A. A. Kon'kov, “The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives”, Izv. Math., 71:1 (2007), 15–51 | DOI | DOI | MR | Zbl

[14] J. Serrin, “Local behaviour of solutions of quasilinear equations”, Acta Math., 111:1 (1964), 247–302 | DOI | MR | Zbl

[15] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | MR | MR | Zbl | Zbl