On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain
Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 758-808

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-negative solutions of quasi-linear elliptic inequalities $\operatorname{div}A(x,Du)\geqslant0$ in $\Omega_{R_0,R_1}$, $0\leqslant R_0$, where $\Omega_{R_0,R_1}=\{x\in\Omega\colon R_0|x|$, $\Omega\subset{\mathbb R}^n$ ($n\geqslant2$) is a non-empty open set, and the function $A\colon\Omega_{R_0,R_1}\times{\mathbb R}^n\to{\mathbb R}^n$ satisfies the ellipticity conditions $C_1|\xi|^p\le\xi A(x,\xi)$, $|A(x,\xi)|\le C_2|\xi|^{p-1}$, $C_1,C_2>0$, $p>1$, for almost all $x\in\Omega_{R_0,R_1}$ and all $\xi\in{\mathbb R}^n$. Our bounds for solutions take the geometry of $\Omega$ into account.
Keywords: non-linear elliptic operators, unbounded domains, capacity.
@article{IM2_2014_78_4_a4,
     author = {A. A. Kon'kov},
     title = {On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain},
     journal = {Izvestiya. Mathematics },
     pages = {758--808},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 758
EP  - 808
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/
LA  - en
ID  - IM2_2014_78_4_a4
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain
%J Izvestiya. Mathematics 
%D 2014
%P 758-808
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/
%G en
%F IM2_2014_78_4_a4
A. A. Kon'kov. On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 758-808. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a4/