The buffer phenomenon in ring-like chains of unidirectionally connected generators
Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 708-743
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a new object, namely, a system of ordinary differential equations
which is a mathematical model of a ring-like chain of unidirectionally
connected RCL-generators. To study periodic solutions of travelling wave type
of this system, some special tricks are used which reduce the existence and
stability problems for cycles to the investigation of auxiliary delay
equations. Using this approach, we establish that the number of stable
travelling waves simultaneously existing in the chain increases unboundedly
as the number of links of the chain increases, that is, the well-known buffer
phenomenon occurs.
Keywords:
chain of unidirectionally connected generators, travelling wave,
asymptotic behaviour, stability, buffer phenomenon.
@article{IM2_2014_78_4_a2,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {The buffer phenomenon in ring-like chains of unidirectionally connected generators},
journal = {Izvestiya. Mathematics },
pages = {708--743},
publisher = {mathdoc},
volume = {78},
number = {4},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a2/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - The buffer phenomenon in ring-like chains of unidirectionally connected generators JO - Izvestiya. Mathematics PY - 2014 SP - 708 EP - 743 VL - 78 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a2/ LA - en ID - IM2_2014_78_4_a2 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A N. Kh. Rozov %T The buffer phenomenon in ring-like chains of unidirectionally connected generators %J Izvestiya. Mathematics %D 2014 %P 708-743 %V 78 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a2/ %G en %F IM2_2014_78_4_a2
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The buffer phenomenon in ring-like chains of unidirectionally connected generators. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 708-743. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a2/