Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces
Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 641-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every boundedly compact $\operatorname{m}$-connected (Menger-connected) set is monotone path-connected and is a sun in a broad class of Banach spaces (in particular, in separable spaces). We show that the intersection of a boundedly compact monotone path-connected ($\operatorname{m}$-connected) set with a closed ball is cell-like (of trivial shape) and, in particular, acyclic (contractible in the finite-dimensional case) and is a sun. We also prove that every boundedly weakly compact $\operatorname{m}$-connected set is monotone path-connected. In passing, we extend the Rainwater–Simons weak convergence theorem to the case of convergence with respect to the associated norm (in the sense of Brown).
Keywords: sun, acyclic set, cell-like set, monotone path-connected set, Menger connectedness, $d$-convexity, Menger convexity, Rainwater–Simons theorem.
@article{IM2_2014_78_4_a0,
     author = {A. R. Alimov},
     title = {Monotone path-connectedness and solarity of {Menger-connected} sets in {Banach} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {641--655},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 641
EP  - 655
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a0/
LA  - en
ID  - IM2_2014_78_4_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces
%J Izvestiya. Mathematics 
%D 2014
%P 641-655
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a0/
%G en
%F IM2_2014_78_4_a0
A. R. Alimov. Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 641-655. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a0/

[1] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[2] B. Brosowski, F. Deutsch, J. Lambert, P. D. Morris, “Chebyshev sets which are not suns”, Math. Ann., 212:2 (1974), 89–101 | DOI | MR | Zbl

[3] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272 | DOI | DOI | MR | Zbl

[4] A. R. Alimov, “Connectedness of suns in the space $c_0$”, Izv. Math., 69:4 (2005), 651–666 | DOI | DOI | MR | Zbl

[5] A. R. Alimov, “Local solarity of suns in normed linear spaces”, J. Math. Sci., 197:4 (2014), 447–454 | DOI | MR

[6] L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Russian Math. Surveys, 28:6 (1973), 1–66 | DOI | MR | Zbl

[7] A. R. Alimov, “A monotone path connected Chebyshev set is a sun”, Math. Notes, 91:2 (2012), 290–292 | DOI | DOI | Zbl

[8] A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding”, Eurasian Math. J., 3:2 (2012), 21–30 | MR | Zbl

[9] C. Franchetti, S. Roversi, Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint No 50139, Inst. di Mat. Appl. “G. Sansone”, 1988

[10] S. A. Melikhov, “Steenrod homotopy”, Russian Math. Surveys, 64:3 (2009), 469–551 | DOI | DOI | MR | Zbl

[11] W. S. Massey, Homology and cohomology theory, Monogr. Textbooks Pure Appl. Math., 46, Marcel Dekker, Inc., New York–Basel, 1978, xiv+412 pp. | MR | Zbl

[12] K. Eda, U. H. Karimov, D. Repovš, “On (co)homology locally connected spaces”, Topology Appl., 120:3 (2002), 397–401 | DOI | MR | Zbl

[13] L. Górniewicz, Topological fixed point theory of multivalued mappings, Topol. Fixed Point Theory Appl., 4, 2nd ed., Springer, Dordrecht, 2006, xiv+539 pp. | DOI | MR | Zbl

[14] L. Górniewicz, “Topological structure of solution sets: current results”, Arch. Math. (Brno), 36 (2000), 343–382 | MR | Zbl

[15] R. Dragoni, J. W. Macki, P. Nistri, P. Zecca, Solution sets of differential equations in abstract spaces, Pitman Res. Notes Math. Ser., 342, Harlow, Longman, 1996, xii+100 pp. | MR | Zbl

[16] J. Andres, G. Gabor, L. Górniewicz, “Acyclicity of solution sets to functional inclusions”, Nonlinear Anal., 49:5 (2002), 671–688 | DOI | MR | Zbl

[17] W. Kryszewski, “On the existence of equilibria and fixed points of maps under constraints”, Handbook of topological fixed point theory, Springer, Dordrecht, 2005, 783–866 | DOI | MR | Zbl

[18] Shouchuan Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. II, Math. Appl., 500, Applications, Kluwer Academic Publishers, Dordrecht, 2000, xii+926 pp. | MR | Zbl

[19] A. L. Brown, “Chebyshev sets and the shapes of convex bodies”, Methods of functional analysis in approximation theory (Bombay, 1985), Internat. Schriftenreihe Numer. Math., 76, Birkhäuser, Basel, 1986, 97–121 | MR | Zbl

[20] B. Brosowski, F. Deutsch, “On some geometric properties of suns”, J. Approximation Theory, 10:3 (1974), 245–267 | DOI | MR | Zbl

[21] J. R. Giles, “The Mazur intersection problem”, J. Convex Anal., 13:3–4 (2006), 739–750 | MR | Zbl

[22] E. N. Dancer, B. Sims, “Weak star separability”, Bull. Austral. Math. Soc., 20:2 (1979), 253–257 | DOI | MR | Zbl

[23] O. Nygaard, “A remark on Rainwater's theorem”, Ann. Math. Inform., 32 (2005), 125–127 | MR | Zbl

[24] O. F. K. Kalenda, “$(I)$-envelopes of unit balls and James' characterization of reflexivity”, Studia Math., 182:1 (2007), 29–40 | DOI | MR | Zbl

[25] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011, xiv+820 pp. | DOI | MR | Zbl

[26] I. G. Tsarkov, “Geometricheskaya teoriya priblizhenii v rabotakh N. V. Efimova i S. B. Stechkina”, Sovrem. Probl. Matem. Mekhan., 4:2 (2011), 57–78

[27] M. V. Balashov, G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces”, Izv. Math., 73:3 (2009), 455–499 | DOI | DOI | MR | Zbl

[28] A. L. Brown, “On the connectedness properties of suns in finite-dimensional spaces”, Workshop/Miniconference on functional analysis and optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl

[29] Sze-Tsen Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965, 234 pp. | MR | Zbl

[30] K. Menger, “Untersuchungen über allgemeine Metrik”, Math. Ann., 100:1 (1928), 75–163 | DOI | MR | Zbl

[31] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Stud. Adv. Math., 28, Cambridge Univ. Press, Cambridge, 1990, viii+244 pp. | MR | Zbl

[32] Encyclopedia of general topology, eds. K. P. Hart, J. Nagata, J. E. Vaughan, Elsevier, Amsterdam, 2004, x+526 pp. | MR | Zbl

[33] G. Gabor, “On the acyclicity of fixed point sets of multivalued maps”, Topol. Methods Nonlinear Anal., 14:2 (1999), 327–343 | MR | Zbl

[34] J. Dugundji, Topology, no. xvi+447, Allyn and Bacon, Inc., Boston, MA, 1966 | MR | Zbl

[35] R. R. Phelps, “A representation theorem for bounded convex sets”, Proc. Amer. Math. Soc., 11:6 (1960), 976–983 | DOI | MR | Zbl

[36] I. G. Tsar'kov, “Bounded Chebyshev sets in finite-dimensional Banach spaces”, Math. Notes, 36:1 (1984), 530–537 | DOI | MR | Zbl

[37] A. L. Brown, “On the problem of characterising suns in finite dimensional spaces”, Proceedings of the Fourth international conference on functional analysis and approximation theory (Potenza, 2000), v. I, Rend. Circ. Mat. Palermo (2) Suppl., 68, part I, 2002, 315–328 | MR | Zbl

[38] A. L. Brown, “Suns in polyhedral spaces”, Seminar of mathematical analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville, 2003, 139–146 | MR | Zbl