Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_3_a6, author = {A. E. Mamontov and D. A. Prokudin}, title = {Solubility of a~stationary boundary-value problem for the equations of motion of a~one-temperature mixture of viscous compressible heat-conducting fluids}, journal = {Izvestiya. Mathematics }, pages = {554--579}, publisher = {mathdoc}, volume = {78}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a6/} }
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Solubility of a~stationary boundary-value problem for the equations of motion of a~one-temperature mixture of viscous compressible heat-conducting fluids JO - Izvestiya. Mathematics PY - 2014 SP - 554 EP - 579 VL - 78 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a6/ LA - en ID - IM2_2014_78_3_a6 ER -
%0 Journal Article %A A. E. Mamontov %A D. A. Prokudin %T Solubility of a~stationary boundary-value problem for the equations of motion of a~one-temperature mixture of viscous compressible heat-conducting fluids %J Izvestiya. Mathematics %D 2014 %P 554-579 %V 78 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a6/ %G en %F IM2_2014_78_3_a6
A. E. Mamontov; D. A. Prokudin. Solubility of a~stationary boundary-value problem for the equations of motion of a~one-temperature mixture of viscous compressible heat-conducting fluids. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 554-579. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a6/
[1] R. I. Nigmatulin, Dinamika mnogofaznykh sred, ch. 1, Nauka, M., 1987
[2] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Ser. Adv. Math. Appl. Sci., 35, World Scientific, River Edge, NJ, 1995 | MR | Zbl
[3] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods Appl. Anal., 20:2 (2013), 179–196 | DOI | MR | Zbl
[4] J. Frehse, S. Goj, J. Málek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl
[5] J. Frehse, S. Goj, J. Málek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl
[6] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl
[7] N. A. Kucher, D. A. Prokudin, “Analiz razreshimosti kraevoi zadachi dlya uravnenii smesei vyazkikh szhimaemykh zhidkostei”, Vestn. Kemer. gos. un-ta, 1:45 (2011), 32–38
[8] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary solutions to the equations of dynamics of mixtures of heat-conductive compressible viscous fluids”, Siberian Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl
[9] A. A. Papin, Kraevye zadachi dvukhfaznoi filtratsii, AltGU, Barnaul, 2009
[10] A. N. Petrov, “Korrektnost nachalno-kraevykh zadach dlya odnomernykh uravnenii vzaimopronikayuschego dvizheniya sovershennykh gazov”, Dinamika neodnorodnoi zhidkosti, Dinamika sploshnoi sredy, v. 56, In-t gidrodinamiki, Novosibirsk, 1982, 105–121
[11] P.-L. Lions, Mathematical topics in fluid mechanics, v. 2, Oxford Lecture Ser. Math. Appl., 10, Compressible Models, Oxford University Press, New York, 1998 | MR | Zbl
[12] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford University Press, Oxford, 2004 | MR | Zbl
[13] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford University Press, Oxford, 2004 | MR | Zbl
[14] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2009 | MR | Zbl
[15] P. Plotnikov, J. Sokolowski, Compressible Navier–Stokes equations. Theory and shape optimization, IMPAN Monogr. Mat. (N. S.), 73, Birkhäuser, Basel, 2012 | MR | Zbl
[16] O. V. Voinov, V. V. Pukhnachev, “Termokapillyarnoe dvizhenie v gazozhidkostnoi smesi”, Prikladnaya mekhanika i tekhnicheskaya fizika, 21:5 (1980), 38–45
[17] B. T. Zhumagulov, V. N. Monakhov, Gidrodinamika neftedobychi, KazgosINTI, Almaty, 2001
[18] S. K. Gard, J. W. Prichett, “Dynamics of gas-fluidized beds”, J. Appl. Phys., 46:10 (1975), 4493–4500 | DOI
[19] A. Novotný, M. Pokorný, “Steady compressible Navier–Stokes–Fourier system for monoatomic gas and its generalizations”, J. Differential Equations, 251:1 (2011), 270–315 | DOI | MR | Zbl
[20] P. B. Mucha, M. Pokorný, “On the steady compressible Navier–Stokes–Fourier system”, Comm. Math. Phys., 288:1 (2009), 349–377 | DOI | MR | Zbl
[21] P. B. Mucha, M. Pokorný, “Weak solutions to equations of steady compressible heat conducting fluids”, Math. Models Methods Appl. Sci., 20:5 (2010), 785–813 | DOI | MR | Zbl
[22] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[23] M. E. Bogovskii, “O reshenii nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\operatorname{div}$ i $\operatorname{grad}$”, Tr. sem. S. L. Soboleva, 1, In-t matem. SO AN SSSR, Novosibirsk, 1980, 5–40
[24] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl
[25] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl
[26] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[27] R. R. Coifman, Y. Meyer, “On commutators of singular integrals and bilinear singular integrals”, Trans. Amer. Math. Soc., 212, 1975, 315–331 | DOI | MR | Zbl
[28] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics, Res. Notes in Math., 39, Pitman, Boston, MA, 1979, 136–212 | MR | Zbl
[29] I. Ekeland, R. Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications, 1, North-Holland, Amsterdam–Oxford; Elsevier, New York, 1976 | MR | MR | Zbl | Zbl