Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_3_a5, author = {L. V. Kuz'min}, title = {On $\ell$-adic logarithms of {Gauss} sums}, journal = {Izvestiya. Mathematics }, pages = {531--553}, publisher = {mathdoc}, volume = {78}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a5/} }
L. V. Kuz'min. On $\ell$-adic logarithms of Gauss sums. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 531-553. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a5/
[1] S. Lang, “Cyclotomic fields I and II”, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990 | DOI | MR | Zbl
[2] B. H. Gross, N. Koblitz, “Gauss sums and the $p$-adic $\Gamma$-function”, Ann. of Math. (2), 109:3 (1979), 569–581 | DOI | MR | Zbl
[3] H. Miki, “On the $l$-adic expansion of certain Gauss sums and its applications”, Galois representations and arithmetic algebraic geometry (Kyoto 1985/Tokyo 1986), Adv. Stud. Pure Math., 12, North-Holland, Amsterdam, 1987, 87–118 | MR | Zbl
[4] L. V. Kuz'min, “Some explicit calculations in local and global cyclotomic fields”, Proc. Steklov Inst. Math., 208 (1995), 179–197 | MR | Zbl
[5] W. Sinnott, “On the Stickelberger ideal and the circular units of a cyclotomic field”, Ann. of Math. (2), 108:1 (1978), 107–134 | DOI | MR | Zbl