On $\ell$-adic logarithms of Gauss sums
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 531-553
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Gauss sum $S(\chi)$ corresponding to a character $\chi$
of order $\ell^md$ of the multiplicative group of a finite field $\mathbb F_q$
of characteristic $p$, we obtain an approximate formula for the $\ell$-adic
logarithm of $S(\chi)$. We construct a special basis in the group of logarithms
and define modulo $\ell^m$ the coefficients of $\log_\ell(S(\chi))$ relative
to this basis (modulo $\ell^{m-1}$ if $\ell=2$). These coefficients
are defined in terms of power residues of some cyclotomic numbers
at the places over $p$.
Keywords:
cyclotomic units, Iwasawa theory, reciprocity laws.
Mots-clés : Gauss sums
Mots-clés : Gauss sums
@article{IM2_2014_78_3_a5,
author = {L. V. Kuz'min},
title = {On $\ell$-adic logarithms of {Gauss} sums},
journal = {Izvestiya. Mathematics },
pages = {531--553},
publisher = {mathdoc},
volume = {78},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a5/}
}
L. V. Kuz'min. On $\ell$-adic logarithms of Gauss sums. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 531-553. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a5/