An area formula for Lipschitz mappings of Carnot--Carath\'eodory spaces
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 475-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a sub-Riemannian analogue of the area formula for Lipschitz mappings (in the sub-Riemannian sense) between equiregular Carnot–Carathéodory spaces. In particular, we give an adequate analytic definition of the sub-Riemannian Jacobian.
Keywords: Carnot–Carathéodory space, differentiability, Lipschitz mapping, sub-Riemannian quasi-metric, area formula.
@article{IM2_2014_78_3_a3,
     author = {M. B. Karmanova},
     title = {An area formula for {Lipschitz} mappings of {Carnot--Carath\'eodory} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {475--499},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a3/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - An area formula for Lipschitz mappings of Carnot--Carath\'eodory spaces
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 475
EP  - 499
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a3/
LA  - en
ID  - IM2_2014_78_3_a3
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T An area formula for Lipschitz mappings of Carnot--Carath\'eodory spaces
%J Izvestiya. Mathematics 
%D 2014
%P 475-499
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a3/
%G en
%F IM2_2014_78_3_a3
M. B. Karmanova. An area formula for Lipschitz mappings of Carnot--Carath\'eodory spaces. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 475-499. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a3/

[1] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969 | MR | MR | Zbl | Zbl

[2] P. Hajłasz, “Sobolev mappings, co-area formula and related topics”, Proceedings on analysis and geometry (Novosibirsk, 1999), Sobolev Institute Press, Novosibirsk, 2000, 227–254 | MR | Zbl

[3] B. Kirchheim, “Rectifiable metric spaces: local structure and regularity of the Hausdorff measure”, Proc. Amer. Math. Soc., 121:1 (1994), 113–123 | DOI | MR | Zbl

[4] L. Ambrosio, B. Kirchheim, “Rectifiable sets in metric and Banach spaces”, Math. Ann., 318:3 (2000), 527–555 | DOI | MR | Zbl

[5] M. B. Karmanova, “Metric differentiability of mappings and geometric measure theory”, Dokl. Math., 71:2 (2005), 224–227 | MR | Zbl

[6] M. Karmanova, “Geometric measure theory formulas on rectifiable metric spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 103–136 | DOI | MR | Zbl

[7] M. B. Karmanova, “Area and coarea formulas for the mappings of Sobolev classes with values in a metric space”, Siberian Math. J., 48:4 (2007), 621–628 | DOI | MR | Zbl

[8] S. Vodopyanov, “Geometry of Carnot–Carathéodory spaces and differentiability of mappings”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | DOI | MR | Zbl

[9] P. Pansu, “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math. (2), 129:1 (1989), 1–60 | DOI | MR | Zbl

[10] S. D. Pauls, “A notion of rectifiability modeled on Carnot groups”, Indiana Univ. Math. J., 53:1 (2004), 49–81 | DOI | MR | Zbl

[11] V. Magnani, “Differentiability and area formula on stratified Lie groups”, Houston J. Math., 27:2 (2001), 297–323 | MR | Zbl

[12] M. Karmanova, S. Vodopyanov, “An area formula for contact $C^1$-mappings of Carnot manifolds”, Complex Var. Elliptic Equ., 55:1–3 (2010), 317–329 | DOI | MR | Zbl

[13] A. N. Varchenko, “Obstructions to local equivalence of distributions”, Math. Notes, 29:6 (1981), 479–484 | DOI | MR | Zbl | Zbl

[14] S. G. Basalaev, S. K. Vodopyanov, “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl

[15] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–318 | MR | Zbl

[16] M. Karmanova, S. Vodopyanov, “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 233–335 | MR | Zbl

[17] A. Nagel, E. M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl

[18] M. B. Karmanova, “A new approach to investigation of Carnot–Carathéodory geometry”, Dokl. Math., 82:2 (2010), 746–750 | DOI | MR | Zbl

[19] M. Karmanova, S. Vodopyanov, “On local approximation theorem on equiregular Carnot–Carathéodory spaces”, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer-Verlag, Berlin, 2014, 241–262 | Zbl

[20] S. K. Vodopyanov, M. B. Karmanova, “A local approximation theorem on Carnot manifolds under minimal smoothness conditions”, Dokl. Math., 80:1 (2009), 585–589 | DOI | MR | Zbl

[21] M. B. Karmanova, “Fine properties of basis vector fields under minimal assumptions on smoothness”, Siberian Math. J., 55:1 (2014)

[22] M. M. Postnikov, Lektsii po geometrii. Semestr V. Gruppy i algebry Li, Nauka, M., 1982 | MR | Zbl

[23] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monogr. Math., Springer-Verlag, Berlin, 2007 | MR | Zbl

[24] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ, 1982 | MR | Zbl

[25] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uch. zap. Mosk. gos.ped. in-ta im. K. Libknekhta. Ser. fiz.-mat., 3:2 (1938), 83–94

[26] W.-L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117:1 (1939), 98–105 | DOI | MR | Zbl

[27] J. Mitchell, “On Carnot–Carathéodory metrics”, J. Differential Geom., 21:1 (1985), 35–45 | MR | Zbl

[28] S. K. Vodop'yanov, M. B. Karmanova, “Local geometry of Carnot manifolds under minimal smoothness”, Dokl. Math., 75:2 (2007), 240–246 | DOI | MR | Zbl

[29] S. K. Vodopyanov, Integrirovanie po Lebegu, http://math.nsc.ru/<nobr>$\sim$</nobr>matanalyse/Lebesgue.pdf

[30] M. Karmanova, “Rectifiable sets and coarea formula for metric-valued mappings”, J. Funct. Anal., 254:5 (2008), 1410–1447 | DOI | MR | Zbl

[31] M. Guzmán, Differentiation of integrals in $\mathbb R^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin, 1975 | DOI | MR | Zbl

[32] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992 | MR | Zbl

[33] S. K. Vodop'yanov, D. V. Isangulova, “Differentiability of the mappings of Carnot–Carathéodory spaces in the Sobolev and $BV$-topologies”, Siberian Math. J., 48:1 (2007), 37–55 | DOI | MR | Zbl

[34] M. B. Karmanova, “An area formula for Lipschitz mappings of Carnot–Carathéodory spaces”, Dokl. Math., 78:3 (2008), 901–906 | DOI | MR | Zbl

[35] M. B. Karmanova, “Graphs of Lipschitz functions and minimal surfaces on Carnot groups”, Dokl. Math., 86:1 (2012), 500–505 | DOI | MR | Zbl

[36] M. B. Karmanova, “The graphs of Lipschitz functions and minimal surfaces on Carnot groups”, Sib. Math. J., 53:4 (2012), 672–690 | DOI | MR | Zbl