Sub-Riemannian geometries on compact homogeneous spaces
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 459-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider totally non-holonomic sub-Riemannian structures on compact homogeneous spaces and conjecture that, in most cases, the existence of such a structure implies that there is an invariant Riemannian structure. We prove a strengthened version of this conjecture for some important classes of compact homogeneous spaces.
Keywords: sub-Riemannian structure, homogeneous space.
Mots-clés : invariant distribution
@article{IM2_2014_78_3_a2,
     author = {V. V. Gorbatsevich},
     title = {Sub-Riemannian geometries on compact homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {459--474},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Sub-Riemannian geometries on compact homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 459
EP  - 474
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a2/
LA  - en
ID  - IM2_2014_78_3_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Sub-Riemannian geometries on compact homogeneous spaces
%J Izvestiya. Mathematics 
%D 2014
%P 459-474
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a2/
%G en
%F IM2_2014_78_3_a2
V. V. Gorbatsevich. Sub-Riemannian geometries on compact homogeneous spaces. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 459-474. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a2/

[1] V. V. Gorbatsevich, “Ob invariantnykh subrimanovykh strukturakh na kompaktnykh odnorodnykh prostranstvakh c diskretnoi statsionarnoi podgruppoi”, Matem. zametki (to appear)

[2] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. gosud. ped. in-ta im. K. Libknekhta. Ser. fiz-mat., 3 (1938), 83–94

[3] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | Zbl

[4] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras I. Foundations of Lie theory, Encyclopaedia Math. Sci., 20, 1993, 95–229 | MR | MR | Zbl | Zbl

[5] J. A. Wolf, Spaces of constant curvature, Univ. of California, Berkeley, CA, 1972 | MR | MR | Zbl | Zbl

[6] V. V. Gorbatsevich, “Invariant distributions on compact homogeneous spaces”, Sb. Math., 204:12 (2013), 1712–1727 | DOI | DOI

[7] V. V. Gorbatsevich, “O klassifikatsii chetyrekhmernykh kompaktnykh odnorodnykh prostranstv”, UMN, 32:2 (1977), 207–208 | MR | Zbl

[8] V. V. Gorbacevič, “On aspherical homogeneous spaces”, Math. USSR-Sb., 29:2 (1976), 223–238 | DOI | MR | Zbl | Zbl

[9] G. D. Mostow, “Arithmetic subgroups of groups with radical”, Ann. of Math. (2), 93 (1971), 409–438 | DOI | MR | Zbl

[10] G. D. Mostow, “On the topology of homogeneous spaces of finite measure”, Symposia Mathematica (INDAM, Roma, Gennaio, 1974), 16, Academic Press, London, 1975, 375–398 | MR | Zbl

[11] A. L. Onishchik, Topology of transitive transformation groups, Barth, Leipzig, 1994 | MR | MR | Zbl | Zbl

[12] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 ; 27, no. 5, 1986 | MR | MR | Zbl | Zbl | MR | Zbl

[13] V. V. Gorbatsevich, “Compact homogeneous spaces with a semisimple fundamental group. I”, Siberian Math. J., 22:1 (1981), 34–49 ; “II”, 27:5 (1986), 660–669 | DOI | DOI | MR | MR | Zbl | Zbl

[14] V. V. Gorbatsevich, “O kompaktnykh odnorodnykh prostranstvakh s razreshimoi fundamentalnoi gruppoi. I”, Geometricheskie metody v zadachakh analiza i algebry, YarGU, Yaroslavl, 1981, 71–87 ; “II”, Вопросы теории групп и гомологической алгебры, ЯрГУ, Ярославль, 1982, 13–28 ; “III”, 1985, 93–103 ; “IV”, 1991, 88–98 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[15] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | MR | Zbl | Zbl

[16] V. V. Gorbatsevich, “O kompaktnykh odnorodnykh prostranstvakh maloi razmernosti”, Geom. metody v zadachakh algebry i analiza, YarGU, Yaroslavl, 1980, 37–60 | MR | Zbl