Modelling unsteady processes in semiconductors using a~non-linear Sobolev equation
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 427-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an initial-boundary value problem for a non-linear Sobolev equation containing a summand non-local in time and an inhomogeneity. The equation simulates unsteady processes in semiconductors. We find sufficient conditions for the unique solubility of the problem, both global in time and local (rather than global). In the case when the problem is soluble only locally, we find upper and lower bounds for the lifespan of a solution.
Keywords: equations of Sobolev type, blow-up of solutions, method of energy estimates.
@article{IM2_2014_78_3_a0,
     author = {A. I. Aristov},
     title = {Modelling unsteady processes in semiconductors using a~non-linear {Sobolev} equation},
     journal = {Izvestiya. Mathematics },
     pages = {427--442},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a0/}
}
TY  - JOUR
AU  - A. I. Aristov
TI  - Modelling unsteady processes in semiconductors using a~non-linear Sobolev equation
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 427
EP  - 442
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a0/
LA  - en
ID  - IM2_2014_78_3_a0
ER  - 
%0 Journal Article
%A A. I. Aristov
%T Modelling unsteady processes in semiconductors using a~non-linear Sobolev equation
%J Izvestiya. Mathematics 
%D 2014
%P 427-442
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a0/
%G en
%F IM2_2014_78_3_a0
A. I. Aristov. Modelling unsteady processes in semiconductors using a~non-linear Sobolev equation. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 427-442. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a0/

[1] M. O. Korpusov, Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, URSS, M., 2010

[2] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchnyi mir, M., 2008

[4] A. I. Aristov, “Issledovanie kachestvennykh svoistv reshenii odnogo nelineinogo sobolevskogo uravneniya”, Sb. statei molodykh uchenykh f-ta VMK MGU 2010 g., 7, Maks-Press, M., 2010, 11–22

[5] A. I. Aristov, “Otsenki vremeni suschestvovaniya reshenii nachalno-kraevoi zadachi dlya odnogo nelineinogo sobolevskogo uravneniya s peremennym koeffitsientom”, Differents. uravneniya, 48:6 (2012), 781–789 | Zbl