Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_2_a3, author = {I. D. Kan and D. A. Frolenkov}, title = {A strengthening of a~theorem of {Bourgain} and {Kontorovich}}, journal = {Izvestiya. Mathematics }, pages = {293--353}, publisher = {mathdoc}, volume = {78}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a3/} }
I. D. Kan; D. A. Frolenkov. A strengthening of a~theorem of Bourgain and Kontorovich. Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 293-353. http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a3/
[1] S. K. Zaremba, “La méthode des “bons treillis” pour le calcul des intégrales multiples”, Applications of number theory to numerical analysis (Montreal, Canada, 1971), Academic Press, New York, 1972, 39–119 | MR | Zbl
[2] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl
[3] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, C. R. Math. Acad. Sci. Paris, 349:9–10 (2011), 493–495 | DOI | MR | Zbl
[4] N. G. Moshchevitin, On some open problems in Diophantine approximation, arXiv: abs/1202.4539v4
[5] D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl
[6] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stochastics and Dynamics, 4 (2004), 63–76 | DOI | MR | Zbl
[7] J. Bourgain, A. Kontorovich, P. Sarnak, “Sector estimates for hyperbolic isometries”, Geom. Funct. Anal., 20:5 (2010), 1175–1200 | DOI | MR | Zbl
[8] E. V. Podsypanin, “Distribution of integral points on the determinant surface”, J. Soviet Math., 19:2 (1982), 1088–1095 | DOI | MR | Zbl | Zbl
[9] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Théorie des nombres (Quebec, PQ, 1987), de Grüyter, Berlin, 1989, 371–385 | MR | Zbl
[10] D. A. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem by elementary methods, arXiv: abs/1207.4546
[11] D. A. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem, arXiv: abs/1207.5168
[12] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, Addison-Wesley, Reading, MA, 1994 | MR | Zbl
[13] H. Iwaniec, E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[14] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”. Aktualnye problemy, ch. III (Tula, 2001), Izd-vo Mosk. un-ta, M., 2002, 86–114 | Zbl
[15] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[16] D. E. Knuth, A. C. Yao, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Nat. Acad. Sci. U.S.A., 72:12 (1975), 4720–4722 | DOI | MR | Zbl
[17] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 | MR | MR | Zbl | Zbl