A strengthening of a~theorem of Bourgain and Kontorovich
Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 293-353
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the set of positive integers contains a positive proportion
of numbers satisfying Zaremba's conjecture with $A=7$. This result strengthens
a similar theorem of Bourgain and Kontorovich obtained for $A=50$.
Keywords:
continued fraction, exponential sums.
Mots-clés : continuant
Mots-clés : continuant
@article{IM2_2014_78_2_a3,
author = {I. D. Kan and D. A. Frolenkov},
title = {A strengthening of a~theorem of {Bourgain} and {Kontorovich}},
journal = {Izvestiya. Mathematics },
pages = {293--353},
publisher = {mathdoc},
volume = {78},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a3/}
}
I. D. Kan; D. A. Frolenkov. A strengthening of a~theorem of Bourgain and Kontorovich. Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 293-353. http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a3/