Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_2_a1, author = {X. Wang and G. Lv}, title = {Global stability of travelling wave fronts for non-local diffusion equations with delay}, journal = {Izvestiya. Mathematics }, pages = {251--267}, publisher = {mathdoc}, volume = {78}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a1/} }
TY - JOUR AU - X. Wang AU - G. Lv TI - Global stability of travelling wave fronts for non-local diffusion equations with delay JO - Izvestiya. Mathematics PY - 2014 SP - 251 EP - 267 VL - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a1/ LA - en ID - IM2_2014_78_2_a1 ER -
X. Wang; G. Lv. Global stability of travelling wave fronts for non-local diffusion equations with delay. Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 251-267. http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a1/
[1] P. W. Bates, P. C. Fife, X. Ren, X. Wang, “Traveling waves in a convolution model for phase transitions”, Arch. Rational Mech. Anal., 138:2 (1997), 105–136 | DOI | MR | Zbl
[2] J. Carr, A. Chmaj, “Uniqueness of travelling waves for nonlocal monostable equations”, Proc. Amer. Math. Soc., 132:8 (2004), 2433–2439 | DOI | MR | Zbl
[3] X. Chen, “Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations”, Adv. Differential Equations, 2:1 (1997), 125–160 | MR | Zbl
[4] P. W. Bates, F. Chen, “Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen–Cahn equation”, J. Math. Anal. Appl., 273:1 (2002), 45–57 | DOI | MR | Zbl
[5] P. W. Bates, F. Chen, “Spectral analysis of traveling waves for nonlocal evolution equations”, SIAM J. Math. Anal., 38:1 (2006), 116–126 | DOI | MR | Zbl
[6] S. X. Pan, W.-T. Li, G. Lin, “Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications”, Z. Angew. Math. Phys., 60:3 (2009), 377–392 | DOI | MR | Zbl
[7] G. Lv, M. Wang, “Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations”, J. Math. Anal. Appl., 385:2 (2012), 1094–1106 | DOI | MR | Zbl
[8] M. Mei, C.-K. Lin, C.-T. Lin, J. W.-H. So, “Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity”, J. Differential Equations, 247:2 (2009), 495–510 | DOI | MR | Zbl
[9] D. H. Sattinger, “On the stability of waves of nonlinear parabolic systems”, Advances in Math., 22:3 (1976), 312–355 | DOI | MR | Zbl
[10] H. L. Smith, X.-Q. Zhao, “Global asymptotic stability of traveling waves in delayed reaction-diffusion equations”, SIAM J. Math. Anal., 31:3 (2000), 514–534 | DOI | MR | Zbl
[11] X. Chen, J.-S. Guo, “Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations”, J. Differential Equations, 184:2 (2002), 549–569 | DOI | MR | Zbl
[12] Z.-C. Wang, W.-T. Li, S. Ruan, “Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays”, J. Differential Equations, 222:1 (2006), 185–232 | DOI | MR | Zbl
[13] Z.-C. Wang, W.-T. Li, S. Ruan, “Traveling fronts in monostable equations with nonlocal delayed effects”, J. Dynam. Differential Equations, 20:3 (2008), 573–607 | DOI | MR | Zbl
[14] M. Mei, C. Ou, X. Q. Zhao, “Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations”, SIAM J. Math. Anal., 42:6 (2010), 2762–2790 | DOI | MR | Zbl
[15] M. Mei, C.-K. Lin, C.-T. Lin, J. W.-H. So, “Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity”, J. Differential Equations, 247:2 (2009), 511–529 | DOI | MR | Zbl
[16] M. Mei, J. W.-H. So, “Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation”, Proc. Roy. Soc. Edinburgh Sect. A, 138:3 (2008), 551–568 | DOI | MR | Zbl
[17] M. Mei, J. W.-H. So, M. Y. Li, S. S. P. Shen, “Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion”, Proc. Roy. Soc. Edinburgh Sect. A, 134:3 (2004), 579–594 | DOI | MR | Zbl
[18] G. Lv, M. Wang, “Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations”, Nonlinearity, 23:4 (2010), 845–873 | DOI | MR | Zbl
[19] F. Andreu, J. M. Mazon, J. D. Rossi, J. Toledo, “The Neumann problem for nonlocal nonlinear diffusion equations”, J. Evol. Equ., 8:1 (2008), 189–215 | DOI | MR | Zbl
[20] C. Cortazar, M. Elgueta, J. D. Rossi, N. Wolanski, “Boundary fluxes for nonlocal diffusion”, J. Differential Equations, 234:2 (2007), 360–390 | DOI | MR | Zbl
[21] S. A. Gourley, J. Wu, “Delayed non-local diffusive systems in biological invasion and disease spread”, Nonlinear dynamics and evolution equations, Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 2006, 137–200 | MR | Zbl
[22] P. Fife, “Some nonclassical trends in parabolic and parabolic-like evolutions”, Trends in nonlinear analysis, Springer-Verlag, Berlin, 2003, 153–191 | MR | Zbl
[23] J. D. Murray, Mathematical biology, Biomathematics, 9, Springer-Verlag, Berlin–Heidelberg–New York, 1993 | MR | Zbl
[24] R. Huang, M. Mei, Y. Wang, “Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity”, Discrete Contin. Dyn. Syst., 32:10 (2012), 3621–3649 | DOI | MR | Zbl
[25] E. Chasseigne, M. Chaves, J. D. Rossi, “Asymptotic behavior for nonlocal diffusion equations”, J. Math. Pures Appl. (9), 86:3 (2006), 271–291 | DOI | MR | Zbl