Global stability of travelling wave fronts for non-local diffusion equations with delay
Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 251-267

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted $L^\infty$-spaces. Moreover, we obtain the decay rates of $\sup_{x\in\mathbb{R}}|u(x,t)-\varphi(x+ct)|$ using weighted energy estimates.
Keywords: stability, delay, travelling wave fronts, weighted energy estimate.
Mots-clés : non-local reaction-diffusion equations
@article{IM2_2014_78_2_a1,
     author = {X. Wang and G. Lv},
     title = {Global stability of travelling wave fronts for non-local diffusion equations with delay},
     journal = {Izvestiya. Mathematics },
     pages = {251--267},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a1/}
}
TY  - JOUR
AU  - X. Wang
AU  - G. Lv
TI  - Global stability of travelling wave fronts for non-local diffusion equations with delay
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 251
EP  - 267
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a1/
LA  - en
ID  - IM2_2014_78_2_a1
ER  - 
%0 Journal Article
%A X. Wang
%A G. Lv
%T Global stability of travelling wave fronts for non-local diffusion equations with delay
%J Izvestiya. Mathematics 
%D 2014
%P 251-267
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a1/
%G en
%F IM2_2014_78_2_a1
X. Wang; G. Lv. Global stability of travelling wave fronts for non-local diffusion equations with delay. Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 251-267. http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a1/