An investigation of smooth maps in a~neighbourhood of an abnormal point
Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 213-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solubility of systems of non-linear equations in a neighbourhood of an abnormal point and prove inverse function theorems that guarantee the existence of solutions satisfying a linear-root estimate in the neighbourhood of the abnormal point. We also address the related issue of necessary conditions for an extremum at an abnormal point in a finite-dimensional constrained problem. We obtain second-order necessary optimality conditions that improve the known results.
Keywords: inverse function theorem, abnormal point, conditional extremum problem.
@article{IM2_2014_78_2_a0,
     author = {E. R. Avakov and A. V. Arutyunov and D. Yu. Karamzin},
     title = {An investigation of smooth maps in a~neighbourhood of an abnormal point},
     journal = {Izvestiya. Mathematics },
     pages = {213--250},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - A. V. Arutyunov
AU  - D. Yu. Karamzin
TI  - An investigation of smooth maps in a~neighbourhood of an abnormal point
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 213
EP  - 250
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a0/
LA  - en
ID  - IM2_2014_78_2_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A A. V. Arutyunov
%A D. Yu. Karamzin
%T An investigation of smooth maps in a~neighbourhood of an abnormal point
%J Izvestiya. Mathematics 
%D 2014
%P 213-250
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a0/
%G en
%F IM2_2014_78_2_a0
E. R. Avakov; A. V. Arutyunov; D. Yu. Karamzin. An investigation of smooth maps in a~neighbourhood of an abnormal point. Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 213-250. http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a0/

[1] E. R. Avakov, “Theorems on estimates in the neighborhood of a singular point of a mapping”, Math. Notes, 47:5 (1990), 425–432 | DOI | MR | Zbl

[2] A. V. Arutyunov, “Implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | Zbl

[3] E. R. Avakov, A. V. Arutyunov, “Inverse function theorem and conditions of extremum for abnormal problems with non-closed range”, Sb. Math., 196:9 (2005), 1251–1269 | DOI | DOI | MR | Zbl

[4] A. V. Arutyunov, D. Yu. Karamzin, “Regular zeros of quadratic maps and their application”, Sb. Math., 202:6 (2011), 783–806 | DOI | DOI | MR | Zbl

[5] A. V. Arutyunov, “Implicit function theorem as a realization of the Lagrange principle. Abnormal points”, Sb. Math., 191:1 (2000), 1–24 | DOI | DOI | MR | Zbl

[6] A. V. Arutyunov, Optimality conditions. Abnormal and degenerate problems, Kluwer Acad. Publ., Dordrecht, 2000 | MR | MR | Zbl | Zbl

[7] V. I. Arnol'd, Catastrophe theory, Springer-Verlag, Berlin, 1992 | MR | MR | Zbl | Zbl

[8] A. V. Arutyunov, S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR

[9] A. V. Arutyunov, V. Jaćimović, “To the theory of extremum for abnormal problems”, Moscow Univ. Comput. Math. Cybernet., 1 (2000), 30–37 | MR | Zbl

[10] A. V. Arutyunov, “Nonnegativity of quadratic forms on intersections of quadrics and quadratic maps”, Math. Notes, 84:2 (2008), 155–165 | DOI | DOI | MR | Zbl

[11] A. V. Arutyunov, D. Yu. Karamzin, “Necessary optimality conditions in an abnormal optimization problem with equality constraints”, Comput. Math. Math. Phys., 46:8 (2006), 1293–1298 | DOI | MR

[12] A. V. Arutyunov, N. T. Tynyanskiǐ, “On necessary conditions for a local minimum in optimal control theory”, Soviet Math. Dokl., 29:2 (1984), 176–179 | MR | Zbl

[13] A. A. Agrachev, R. V. Gamkrelidze, “The index of extremality and quasiextremal controls”, Soviet Math. Dokl., 32:2 (1985), 478–481 | MR | Zbl

[14] A. A. Agrachev, “Topology of quadratic maps and Hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[15] E. R. Avakov, “Extremum conditions for smooth problems with equality-type constraints”, U.S.S.R. Comput. Math. Math. Phys., 25:3 (1985), 24–32 | DOI | MR | Zbl | Zbl