Rigidity of automorphism groups of invariant domains in homogeneous Stein spaces
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 34-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a large class of Stein manifolds which are homogeneous under a complex reductive Lie group, we prove a rigidity property of the automorphism groups of domains invariant with respect to a compact form of this complex group.
Keywords: homogeneous Stein manifold, holomorphic automorphism group.
@article{IM2_2014_78_1_a2,
     author = {F. Deng and Zhou Xiang Yu},
     title = {Rigidity of automorphism groups of invariant domains in homogeneous {Stein} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {34--58},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a2/}
}
TY  - JOUR
AU  - F. Deng
AU  - Zhou Xiang Yu
TI  - Rigidity of automorphism groups of invariant domains in homogeneous Stein spaces
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 34
EP  - 58
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a2/
LA  - en
ID  - IM2_2014_78_1_a2
ER  - 
%0 Journal Article
%A F. Deng
%A Zhou Xiang Yu
%T Rigidity of automorphism groups of invariant domains in homogeneous Stein spaces
%J Izvestiya. Mathematics 
%D 2014
%P 34-58
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a2/
%G en
%F IM2_2014_78_1_a2
F. Deng; Zhou Xiang Yu. Rigidity of automorphism groups of invariant domains in homogeneous Stein spaces. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 34-58. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a2/

[1] X.-Y. Zhou, “On invariant domains in certain complex homogeneous spaces”, Ann. Inst. Fourier (Grenoble), 47:4 (1997), 1101–1115 | DOI | MR | Zbl

[2] G. Fels, L. Geatti, “Invariant domains in complex symmetric spaces”, J. Reine Angew. Math., 454 (1994), 97–118 | MR | Zbl

[3] A. Borel, “Symmetric compact complex spaces”, Arch. Math. (Basel), 33:1 (1979), 49–56 | DOI | MR | Zbl

[4] D. E. Barrett, “Holomorphic equivalence and proper mapping of bounded Reinhardt domains not containing the origin”, Comment. Math. Helv., 59:4 (1984), 550–564 | DOI | MR | Zbl

[5] E. Bedford, “Holomorphic mapping of products of annuli in $\mathbb C^n$”, Pacific J. Math., 87:2 (1980), 271–281 | DOI | MR | Zbl

[6] N. G. Kruzhilin, “Holomorphic automorphisms of hyperbolic Reinhardt domains”, Math. USSR-Izv., 32:1 (1989), 15–38 | DOI | MR | Zbl | Zbl

[7] S. Shimizu, “Automorphisms and equivalence of bounded Reinhardt domains not containing the origin”, Tohoku Math. J. (2), 40:1 (1980), 119–152 | DOI | MR | Zbl

[8] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras, I, Encyclopaedia Math. Sci., 20, Springer-Verlag, Berlin, 1993, 95–235 | MR | MR | Zbl | Zbl

[9] S. Kobayashi, Hyperbolic complex spaces, Grundlehren Math. Wiss., 318, Springer-Verlag, Berlin–Heidelberg, 1998 | MR | Zbl

[10] X. Y. Zhou, “On orbit connectedness, orbit convexity and envelopes of holomorphy”, Izv. RAN. Ser. matem., 58:2 (1994), 196–205 ; X. Y. Zhou, “On orbit connectedness, orbit convexity and envelopes of holomorphy”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 403–413 | MR | Zbl | DOI

[11] A. W. Knapp, Lie groups beyond an introduction, Progr. Math., 40, Birkäuser, Boston, MA, 1996 | MR | Zbl

[12] G. D. Mostow, “Covariant fiberings of Klein spaces. II”, Amer. J. Math., 84:3 (1962), 466–474 | DOI | MR | Zbl

[13] J. A. Wolf, “Locally symmetric homogeneous spaces”, Comment. Math. Helv., 37:1 (1962), 65–101 | DOI | MR | Zbl

[14] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl

[15] Y. Matsushima, “Espaces homogènes de Stein des groupes de Lie complexes”, Nagoya Math. J., 16 (1960), 205–218 | MR | Zbl

[16] M. Lassalle, “Sur la transformation de Fourier–Laurent dans un groupe analytique complexe réductif”, Ann. Inst. Fourier (Grenoble), 28:1 (1978), 115–138 | MR | Zbl

[17] M. Lassalle, “Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact”, Ann. Sci. École Norm. Sup. (4), 11:2 (1978), 167–210 | MR | Zbl

[18] H. Azad, J.-J. Loeb, “Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces”, Indag. Math. (N.S.), 3:4 (1992), 365–375 | DOI | MR | Zbl

[19] P. Heinzner, “Geometric invariant theory on Stein spaces”, Math. Ann., 289:4 (1991), 631–662 | DOI | MR | Zbl

[20] M. Wang, W. Ziller, “On isotropy irreducible Riemannian manifolds”, Acta Math., 166:3–4 (1991), 223–261 | DOI | MR | Zbl

[21] O. V. Manturov, “Homogeneous asymmetric Riemannian spaces with an irreducible group of rotations”, Soviet Math. Dokl., 2 (1961), 1550–1554 | MR | Zbl

[22] O. V. Manturov, “Riemannian spaces with orthogonal and symplectic groups of motions and an irreducible group of rotations”, Soviet Math. Dokl., 2 (1961), 1608–1611 | MR | Zbl

[23] O. V. Manturov, “Odnorodnye rimanovy mnogoobraziya s neprivodimoi gruppoi izotropii”, Tr. sem. po vekt. i tenz. analizu, 13 (1966), 68–145 | MR | Zbl

[24] J. A. Wolf, “The geometry and structure of isotropy irreducible homogeneous spaces”, Acta Math., 120:1 (1968), 59–148 ; correction, Acta Math., 152 (1984), 141–142 | DOI | MR | Zbl | DOI | MR | Zbl

[25] M. Kräimer, “Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen”, Comm. Algebra, 3:8 (1975), 691–737 | DOI | MR | Zbl

[26] G. Patrizio, Pit-Mann Wong, “Stein manifolds with compact symmetric center”, Math. Ann., 289:3 (1991), 355–382 | DOI | MR | Zbl

[27] D. Burns, R. Hind, “Symplectic geometry and the uniqueness of Grauert tubes”, Geom. Funct. Anal., 11:1 (2001), 1–10 | DOI | MR | Zbl

[28] D. Burns, “On the uniqueness and characterization of Grauert tubes”, Complex analysis and geometry (Trento, 1993), Lecture Notes in Pure and Appl. Math., 173, Dekker, New York, 1996, 119–133 | MR | Zbl

[29] V. Guillemin, M. Stenzel, “Grauert tubes and the homogeneous Monge–Ampère equation”, J. Differential Geom., 34:2 (1991), 561–570 | MR | Zbl

[30] L. Lempert, R. Szöke, “Global solutions of the homogeneous complex Monge–Ampère equation and complex structures on the tangent bundle of Riemannian manifolds”, Math. Ann., 290:4 (1991), 689–712 | DOI | MR | Zbl

[31] S.-J. Kan, “On rigidity of Grauert tubes over homogeneous Riemannian manifolds”, J. Reine Angew. Math., 577 (2004), 213–233 ; Erratum, J. Reine Angew. Math., 596 (2006), 235 | MR | Zbl | MR | Zbl

[32] R. Szöke, “Automorphisms of certain Stein manifolds”, Math. Z., 219:3 (1995), 357–385 | DOI | MR | Zbl

[33] R. Szöke, “Complex structures on tangent bundles of Riemannian manifolds”, Math. Ann., 291:3 (1991), 409–428 | DOI | MR | Zbl

[34] T. Ochiai, T. Takahashi, “The group of isometries of a left-invariant Riemannian metric on a Lie group”, Math. Ann., 223 (1976), 91–96 | DOI | MR | Zbl

[35] K. Nakajima, “Homogeneous hyperbolic manifolds and homogeneous Siegel domains”, J. Math. Kyoto Univ., 25:2 (1985), 269–291 | MR | Zbl

[36] E. B. Vinberg, S. G. Gindikin, I. I. Piatetski-Shapiro, “Classification and canonical realization of complex bounded homogeneous domains”, Trans. Moscow Math. Soc., 12 (1963), 404–437 | MR | Zbl

[37] M. Jarnicki, P. Pflug, “Invariant distances and metrics in complex analysis”, de Gruyter Exp. Math., 9, de Gruyter, Berlin, 1993 | MR | Zbl

[38] W. Kaup, “Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen”, Invent. Math., 3 (1967), 43–70 | DOI | MR | Zbl

[39] J.-J. Loeb, “Applications harmoniques et hyperbolicite de domaines tubes”, Enseign. Math. (2), 53:3–4 (2007), 347–367 | MR | Zbl

[40] L. Geatti, A. Iannuzzi, J.-J. Loeb, Hyperbolic manifolds whose envelopes of holomorphy are not hyperbolic, arXiv: abs/math/0612182