Lagrangian fibrations on hyperk\"ahler fourfolds
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 22-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In answer to the strong form of a question posed by Beauville, we give a short geometric proof that any hyperkähler fourfold containing a Lagrangian subtorus $L$ admits a holomorphic Lagrangian fibration with fibre $L$.
Keywords: hyperkähler manifold, Lagrangian fibration.
@article{IM2_2014_78_1_a1,
     author = {D. Greb and Ch. Lehn and S. Rollenske},
     title = {Lagrangian fibrations on hyperk\"ahler fourfolds},
     journal = {Izvestiya. Mathematics },
     pages = {22--33},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a1/}
}
TY  - JOUR
AU  - D. Greb
AU  - Ch. Lehn
AU  - S. Rollenske
TI  - Lagrangian fibrations on hyperk\"ahler fourfolds
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 22
EP  - 33
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a1/
LA  - en
ID  - IM2_2014_78_1_a1
ER  - 
%0 Journal Article
%A D. Greb
%A Ch. Lehn
%A S. Rollenske
%T Lagrangian fibrations on hyperk\"ahler fourfolds
%J Izvestiya. Mathematics 
%D 2014
%P 22-33
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a1/
%G en
%F IM2_2014_78_1_a1
D. Greb; Ch. Lehn; S. Rollenske. Lagrangian fibrations on hyperk\"ahler fourfolds. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a1/

[1] A. Beauville, “Holomorphic symplectic geometry: a problem list”, Complex and differential geometry, Springer Proc. Math., 8, Springer-Verlag, Heidelberg, 2011, 49–63 | DOI | MR | Zbl

[2] D. Greb, Ch. Lehn, S. Rollenske, Lagrangian fibrations on hyperkahler manifolds – On a question of Beauville, arXiv: abs/1105.3410

[3] E. Amerik, F. Campana, “Fibrations méromorphes sur certaines variétés à fibré canonique trivial”, Pure Appl. Math. Q., 4:2, part 1 (2008), 509–545 | DOI | MR | Zbl

[4] E. Amerik, A remark on a question of Beauville about lagrangian fibrations, arXiv: abs/1110.2852

[5] Jun-Muk Hwang, R. Weiss, Webs of Lagrangian tori in projective symplectic manifolds, arXiv: abs/1201.2369

[6] D. Matsushita, “On fibre space structures of a projective irreducible symplectic manifold”, Topology, 38:1 (1999), 79–83 | DOI | MR | Zbl

[7] D. Matsushita, “Equidimensionality of Lagrangian fibrations on holomorphic symplectic manifolds”, Math. Res. Lett., 7:4 (2000), 389–391 | DOI | MR | Zbl

[8] D. Matsushita, “Addendum: “On fibre space structures of a projective irreducible symplectic manifold””, Topology, 40:2 (2001), 431–432 | MR | Zbl

[9] D. Matsushita, “Holomorphic symplectic manifolds and Lagrangian fibrations”, Acta Appl. Math., 75:1–3 (2003), 117–123 | DOI | MR

[10] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl

[11] K. Behrend, B. Fantechi, “Gerstenhaber and Batalin–Vilkovisky structures on Lagrangian intersections”, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser, Boston, MA, 2009, 1–47 | MR | Zbl

[12] J. Wierzba, J. A. Wiśniewski, “Small contractions of symplectic 4-folds”, Duke Math. J., 120:1 (2003), 65–95 | DOI | MR | Zbl