Moduli of mathematical instanton vector bundles with even $c_2$ on projective space
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1195-1223.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the irreducibility problem for the moduli space $I_n$ of instanton vector bundles of rank 2 with second Chern class $n\geqslant1$ on the projective space $\mathbb{P}^3$ (the irreducibility of $I_n$ for odd values of $n$ was proved by the author in 2012). We prove that $I_n$ is irreducible for arbitrary even $n\geqslant2$. This gives the irreducibility of $I_n$ for all $n\geqslant1$.
Keywords: vector bundles, mathematical instantons
Mots-clés : moduli space.
@article{IM2_2013_77_6_a4,
     author = {A. S. Tikhomirov},
     title = {Moduli of mathematical instanton vector bundles with even $c_2$ on projective space},
     journal = {Izvestiya. Mathematics },
     pages = {1195--1223},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a4/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - Moduli of mathematical instanton vector bundles with even $c_2$ on projective space
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1195
EP  - 1223
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a4/
LA  - en
ID  - IM2_2013_77_6_a4
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T Moduli of mathematical instanton vector bundles with even $c_2$ on projective space
%J Izvestiya. Mathematics 
%D 2013
%P 1195-1223
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a4/
%G en
%F IM2_2013_77_6_a4
A. S. Tikhomirov. Moduli of mathematical instanton vector bundles with even $c_2$ on projective space. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1195-1223. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a4/

[1] A. S. Tikhomirov, “Moduli of mathematical instanton vector bundles with odd $c_2$ on projective space”, Izv. Math., 76:5 (2012), 991–1073 | DOI | DOI | MR | Zbl

[2] I. Coandă, A. Tikhomirov, G. Trautmann, “Irreducibility and smoothness of the moduli space of mathematical 5-instantons over $\mathbb{P}_3$”, Internat. J. Math., 14:1 (2003), 1–45 | DOI | MR | Zbl

[3] R. Hartshorne, “Stable vector bundles of rank 2 on $\mathbb{P}_3$”, Math. Ann., 238:3 (1978), 229–280 | DOI | MR | Zbl

[4] W. Barth, “Irreducibility of the space of mathematical instanton bundles with rank 2 and $c_2=4$”, Math. Ann., 258:1 (1981), 81–106 | DOI | MR | Zbl

[5] J. Le Potier, “Sur l'espace de modules des fibrés de Yang et Mills”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser, Boston, 1983, 65–137 | MR | Zbl

[6] M. Skiti, “Sur une famille de fibrés instantons”, Math. Z., 225:3 (1997), 373–394 | DOI | MR | Zbl

[7] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl

[8] W. Barth, “Some properties of stable rank-2 vector bundles on $\mathbf{P}_n$”, Math. Ann., 226:2 (1977), 125–150 | DOI | MR | Zbl

[9] I. Coandă, “On Barth's restriction theorem”, J. Reine Angew. Math., 428 (1992), 97–110 | MR | Zbl