Asymptotic enumeration of Eulerian circuits in graphs with strong mixing properties
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1105-1129
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove an asymptotic formula for the number of Eulerian circuits
in graphs with strong mixing properties and with all vertices having
even degrees. This number is determined up to a multiplicative error
of the form $O(n^{-1/2+\varepsilon})$, where $n$ is the number of vertices.
Keywords:
asymptotic analysis, Gaussian integral,
algebraic connectivity
Mots-clés : Eulerian circuit, Laplacian matrix.
Mots-clés : Eulerian circuit, Laplacian matrix.
@article{IM2_2013_77_6_a1,
author = {M. I. Isaev},
title = {Asymptotic enumeration of {Eulerian} circuits in graphs with strong mixing properties},
journal = {Izvestiya. Mathematics },
pages = {1105--1129},
publisher = {mathdoc},
volume = {77},
number = {6},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a1/}
}
M. I. Isaev. Asymptotic enumeration of Eulerian circuits in graphs with strong mixing properties. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1105-1129. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a1/