Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_6_a0, author = {V. V. Bavula}, title = {Lie algebras of triangular polynomial derivations and an isomorphism criterion for their {Lie} factor algebras}, journal = {Izvestiya. Mathematics }, pages = {1067--1104}, publisher = {mathdoc}, volume = {77}, number = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a0/} }
TY - JOUR AU - V. V. Bavula TI - Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras JO - Izvestiya. Mathematics PY - 2013 SP - 1067 EP - 1104 VL - 77 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a0/ LA - en ID - IM2_2013_77_6_a0 ER -
V. V. Bavula. Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1067-1104. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a0/
[1] V. V. Bavula, The groups of automorphisms of the Lie algebras of triangular polynomial derivations, arXiv: 1304.4225
[2] V. V. Bavula, “Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism”, C. R. Math. Acad. Sci. Paris, 350:11–12 (2012), 553–556 | DOI | MR | Zbl
[3] V. V. Bavula, “Finite dimensionality of $\operatorname{Ext}^n$ and $\operatorname{Tor}_n$ of simple modules over one class of algebras”, Funct. Anal. Appl., 25:3 (1991), 229–230 | DOI | MR | Zbl
[4] V. V. Bavula, “Generalized Weyl algebras and their representations”, St. Petersburg Math. J., 4:1 (1993), 71–92 | MR | Zbl
[5] B. Rotman, G. T. Kneebone, The theory of sets and transfinite numbers, Oldbourne, London, 1966 | MR | Zbl