Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1067-1104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We make a detailed study of the Lie algebras $\mathfrak{u}_n$, $n\geqslant 2$, of triangular polynomial derivations, their injective limit $\mathfrak{u}_\infty$, and their completion $\widehat{\mathfrak{u}}_\infty$. We classify the ideals of $\mathfrak{u}_n$ (all of which are characteristic ideals) and use this classification to give an explicit criterion for Lie factor algebras of $\mathfrak{u}_n$ and $\mathfrak{u}_m$ to be isomorphic. We introduce two new dimensions for (Lie) algebras and their modules: the central dimension $\operatorname{c.dim}$ and the uniserial dimension $\operatorname{u.dim}$, and show that $\operatorname{c.dim}(\mathfrak{u}_n)=\operatorname{u.dim}(\mathfrak{u}_n) =\omega^{n-1}+\omega^{n-2}+\dots+\omega +1$ for all $n\geqslant 2$, where $\omega$ is the first infinite ordinal. Similar results are proved for the Lie algebras $\mathfrak{u}_\infty$ and $\widehat{\mathfrak{u}}_\infty$. In particular, $\operatorname{u.dim}(\mathfrak{u}_\infty)=\omega^\omega$ and $\operatorname{c.dim}(\mathfrak{u}_\infty)=0$.
Keywords: Lie algebra, triangular polynomial derivations, automorphism, isomorphism problem, the derived series and lower central series, locally nilpotent derivations, locally nilpotent and locally finite-dimensional Lie algebras.
@article{IM2_2013_77_6_a0,
     author = {V. V. Bavula},
     title = {Lie algebras of triangular polynomial derivations and an isomorphism criterion for their {Lie} factor algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1067--1104},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a0/}
}
TY  - JOUR
AU  - V. V. Bavula
TI  - Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1067
EP  - 1104
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a0/
LA  - en
ID  - IM2_2013_77_6_a0
ER  - 
%0 Journal Article
%A V. V. Bavula
%T Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras
%J Izvestiya. Mathematics 
%D 2013
%P 1067-1104
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a0/
%G en
%F IM2_2013_77_6_a0
V. V. Bavula. Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1067-1104. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a0/

[1] V. V. Bavula, The groups of automorphisms of the Lie algebras of triangular polynomial derivations, arXiv: 1304.4225

[2] V. V. Bavula, “Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism”, C. R. Math. Acad. Sci. Paris, 350:11–12 (2012), 553–556 | DOI | MR | Zbl

[3] V. V. Bavula, “Finite dimensionality of $\operatorname{Ext}^n$ and $\operatorname{Tor}_n$ of simple modules over one class of algebras”, Funct. Anal. Appl., 25:3 (1991), 229–230 | DOI | MR | Zbl

[4] V. V. Bavula, “Generalized Weyl algebras and their representations”, St. Petersburg Math. J., 4:1 (1993), 71–92 | MR | Zbl

[5] B. Rotman, G. T. Kneebone, The theory of sets and transfinite numbers, Oldbourne, London, 1966 | MR | Zbl