Minimal Lefschetz decompositions of the derived categories for Grassmannians
Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 1044-1065

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct two Lefschetz decompositions of the derived category of coherent sheaves on the Grassmannian of $k$-dimensional subspaces in a vector space of dimension $n$. Both decompositions admit a Lefschetz basis consisting of equivariant vector bundles. We prove that the first decomposition is full. In the case when $n$ and $k$ are coprime, the decompositions coincide and are minimal. We conjecture that the second decomposition is always full and minimal.
Keywords: derived categories of coherent sheaves
Mots-clés : semi-orthogonal decompositions.
@article{IM2_2013_77_5_a6,
     author = {A. Fonarev},
     title = {Minimal {Lefschetz} decompositions of the derived categories for {Grassmannians}},
     journal = {Izvestiya. Mathematics },
     pages = {1044--1065},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/}
}
TY  - JOUR
AU  - A. Fonarev
TI  - Minimal Lefschetz decompositions of the derived categories for Grassmannians
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1044
EP  - 1065
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/
LA  - en
ID  - IM2_2013_77_5_a6
ER  - 
%0 Journal Article
%A A. Fonarev
%T Minimal Lefschetz decompositions of the derived categories for Grassmannians
%J Izvestiya. Mathematics 
%D 2013
%P 1044-1065
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/
%G en
%F IM2_2013_77_5_a6
A. Fonarev. Minimal Lefschetz decompositions of the derived categories for Grassmannians. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 1044-1065. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/