Minimal Lefschetz decompositions of the derived categories for Grassmannians
Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 1044-1065.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct two Lefschetz decompositions of the derived category of coherent sheaves on the Grassmannian of $k$-dimensional subspaces in a vector space of dimension $n$. Both decompositions admit a Lefschetz basis consisting of equivariant vector bundles. We prove that the first decomposition is full. In the case when $n$ and $k$ are coprime, the decompositions coincide and are minimal. We conjecture that the second decomposition is always full and minimal.
Keywords: derived categories of coherent sheaves
Mots-clés : semi-orthogonal decompositions.
@article{IM2_2013_77_5_a6,
     author = {A. Fonarev},
     title = {Minimal {Lefschetz} decompositions of the derived categories for {Grassmannians}},
     journal = {Izvestiya. Mathematics },
     pages = {1044--1065},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/}
}
TY  - JOUR
AU  - A. Fonarev
TI  - Minimal Lefschetz decompositions of the derived categories for Grassmannians
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1044
EP  - 1065
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/
LA  - en
ID  - IM2_2013_77_5_a6
ER  - 
%0 Journal Article
%A A. Fonarev
%T Minimal Lefschetz decompositions of the derived categories for Grassmannians
%J Izvestiya. Mathematics 
%D 2013
%P 1044-1065
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/
%G en
%F IM2_2013_77_5_a6
A. Fonarev. Minimal Lefschetz decompositions of the derived categories for Grassmannians. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 1044-1065. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a6/

[1] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl

[2] A. L. Gorodentsev, A. N. Rudakov, “Exceptional vector bundles on projective spaces”, Duke Math. J., 54:1 (1987), 115–130 | DOI | MR | Zbl

[3] A. A. Beilinson, “Coherent sheaves on $\mathbf P^n$ and problems of linear algebra”, Funct. Anal. Appl., 12:3 (1978), 214–216 | DOI | MR | Zbl

[4] A. I. Bondal, M. M. Kapranov, “Representable functors, Serre functors, and mutations”, Math. USSR-Izv., 35:3 (1990), 519–541 | DOI | MR | Zbl

[5] A. Kuznetsov, “Lefschetz decompositions and categorical resolutions of singularities”, Selecta Math. (N.S.), 13:4 (2008), 661–696 | DOI | MR | Zbl

[6] M. M. Kapranov, “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92:3 (1988), 479–508 | DOI | MR | Zbl

[7] A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182 | DOI | MR | Zbl

[8] A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 105:1 (2007), 157–220 | DOI | MR | Zbl

[9] M. Demazure, “A very simple proof of Bott's theorem”, Invent. Math., 33:3 (1976), 271–272 | DOI | MR | Zbl

[10] V. Gasharov, “A short proof of the Littlewood–Richardson rule”, European J. Combin., 19:4 (1998), 451–453 | DOI | MR | Zbl