Representations of the Yangian of a~Lie superalgebra of type~$A(m,n)$
Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 1021-1043.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the finite-dimensional irreducible representations of the Yangian of a Lie superalgebra of type $A(m,n)$. We formulate and prove a criterion for an irreducible representation to be finite-dimensional.
Keywords: Yangian of a Lie superalgebra, irreducible representation
Mots-clés : Drinfel'd polynomial, simple module.
@article{IM2_2013_77_5_a5,
     author = {V. A. Stukopin},
     title = {Representations of the {Yangian} of {a~Lie} superalgebra of type~$A(m,n)$},
     journal = {Izvestiya. Mathematics },
     pages = {1021--1043},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a5/}
}
TY  - JOUR
AU  - V. A. Stukopin
TI  - Representations of the Yangian of a~Lie superalgebra of type~$A(m,n)$
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1021
EP  - 1043
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a5/
LA  - en
ID  - IM2_2013_77_5_a5
ER  - 
%0 Journal Article
%A V. A. Stukopin
%T Representations of the Yangian of a~Lie superalgebra of type~$A(m,n)$
%J Izvestiya. Mathematics 
%D 2013
%P 1021-1043
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a5/
%G en
%F IM2_2013_77_5_a5
V. A. Stukopin. Representations of the Yangian of a~Lie superalgebra of type~$A(m,n)$. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 1021-1043. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a5/

[1] T. Arakawa, “Drinfeld functor and finite-dimensional representations of Yangian”, Comm. Math. Phys., 205:1 (1999), 1–18 | DOI | MR | Zbl

[2] V. G. Drinfel'd, “Degenerate affine hecke algebras and Yangians”, Funct. Anal. Appl., 20:1 (1986), 58–60 | DOI | MR | Zbl

[3] V. Chari, A. Pressley, A guide to quantum groups, Camb. Univ. Press, Cambridge, 1995 | MR | Zbl

[4] V. Chari, A. Pressley, “Yangians and $R$-matrices”, Enseign. Math. (2), 36:3–4 (1990), 267–302 | MR | Zbl

[5] A. Molev, “Yangians and their applications”, Handbook of algebra, v. 3, Elsevier, Amsterdam, 2003, 907–959 | MR | Zbl

[6] V. O. Tarasov, “Structure of quantum $L$ operators for the $R$ matrix of the $XXZ$ model”, Theoret. and Math. Phys., 61:2 (1984), 1065–1072 | DOI | MR

[7] V. O. Tarasov, “Irreducible monodromy matrices for the $R$ matrix of the $XXZ$ model and local lattice quantum Hamiltonians”, Theoret. and Math. Phys., 63:2 (1985), 440–454 | DOI | MR

[8] G. Arutyunov, S. Frolov, “Foundations of the $\operatorname{Ad}S_5\times S^5$ superstring: I”, J. Phys. A, 42:5 (2009), ID 254003 | DOI | MR | Zbl

[9] L. Dolan, Ch. Nappi, E. Witten, “Yangian symmetry in $D=4$ superconformal Yang–Mills theory”, Quantum theory and symmetries, World Sci. Publ., Hackensack, NJ, 2004, 300–315 | MR

[10] F. Spill, A. Torrielli, “On Drinfeld's second realization of the AdS/CFT $\frak{su}(2|2)$ Yangian”, J. Geom. Phys., 59:4 (2009), 489–502 | DOI | MR | Zbl

[11] V. Kac, “A sketch of Lie superalgebra theory”, Comm. Math. Phys., 53:1 (1977), 31–64 | DOI | MR | Zbl

[12] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie algebras and superalgebras, Academic Press, San Diego, CA, 2000 | MR | Zbl

[13] R. B. Zhang, “Representations of super Yangian”, J. Math. Phys., 36:7 (1995), 3854–3865 | DOI | MR | Zbl

[14] R. B. Zhang, “The $\operatorname{gl}(M|N)$ super Yangian and its finite-dimensional representations”, Lett. Math. Phys., 37:4 (1996), 419–434 | DOI | MR | Zbl

[15] L. Gow, “Gauss Decomposition of the Yangian $Y(\mathrm{gl}_{(M|N)})$”, Comm. Math. Phys., 276:3 (2007), 799–825 | DOI | MR | Zbl

[16] M. L. Nazarov, “Quantum Berezinian and the classical Capelli identity”, Lett. Math. Phys., 21:2 (1991), 123–131 | DOI | MR | Zbl

[17] V. A. Stukopin, “Yangians of Lie superalgebras of type $A(m, n)$”, Funct. Anal. Appl., 28:3 (1994), 217–219 | DOI | MR | Zbl

[18] V. G. Drinfel'd, “Quantum groups”, Proc. Int. Cong. Math. (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR | Zbl

[19] V. G. Drinfel'd, “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32:1 (1985), 254–258 | MR | Zbl

[20] A. I. Molev, Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[21] V. A. Stukopin, “The Yangian double of the Lie superalgebra $A(m, n)$”, Funct. Anal. Appl., 40:2 (2006), 155–158 | DOI | DOI | MR | Zbl

[22] V. A. Stukopin, “The quantum double of the Yangian of the Lie superalgebra $A(m, n)$ and computation of the universal $R$-matrix”, J. Math. Sci. (N. Y.), 142:2 (2007), 1989–2006 | DOI | MR | Zbl

[23] V. Chari, A. Pressley, “Fundamental representations of Yangians and singularities of $R$-matrices”, J. Reine Angew. Math., 417 (1991), 87–128 | MR | Zbl

[24] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris–Brussels–Montreal, 1974 | MR | MR | Zbl

[25] S. Z. Levendorskii, “On PBW bases for Yangians”, Lett. Math. Phys., 27:1 (1993), 37–42 | DOI | MR | Zbl

[26] S. Khoroshkin, M. Nazarov, “Mickelsson algebras and representations of Yangians”, Trans. Amer. Math. Soc., 364:3 (2012), 1293–1367 | DOI | MR | Zbl

[27] V. G. Drinfel'd, “A new realization of Yangians and quantized affine algebras”, Soviet Math. Dokl., 36:2 (1988), 212–216 | MR | Zbl

[28] V. Stukopin, “Representations theory and doubles of Yangians of classical Lie superalgebras”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 255–265 | MR | Zbl

[29] M. Nazarov, V. Tarasov, “On irreducibility of tensor products of Yangian modules”, Internat. Math. Res. Notices, 1998, no. 3, 125–150 | DOI | MR | Zbl