On new results related to Gram's law
Izvestiya. Mathematics, Tome 77 (2013) no. 5, pp. 917-940 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a number of new results related to Gram's law in the theory of the Riemann zeta-function that reflect irregularity in the distribution of the ordinates of the complex zeros of that function. Results are obtained on the distribution of pairs, triples, quadruples, ... of adjacent ordinates of such zeros that simultaneously do not obey Gram's law.
Keywords: Riemann zeta-function, Gram's law, Gram's rule.
@article{IM2_2013_77_5_a1,
     author = {M. A. Korolev},
     title = {On new results related to {Gram's} law},
     journal = {Izvestiya. Mathematics},
     pages = {917--940},
     year = {2013},
     volume = {77},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On new results related to Gram's law
JO  - Izvestiya. Mathematics
PY  - 2013
SP  - 917
EP  - 940
VL  - 77
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/
LA  - en
ID  - IM2_2013_77_5_a1
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On new results related to Gram's law
%J Izvestiya. Mathematics
%D 2013
%P 917-940
%V 77
%N 5
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/
%G en
%F IM2_2013_77_5_a1
M. A. Korolev. On new results related to Gram's law. Izvestiya. Mathematics, Tome 77 (2013) no. 5, pp. 917-940. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/

[1] A. Selberg, “The zeta-function and the Riemann hypothesis”, C. R. Dixieme Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, 187–200 | MR | Zbl

[2] A. Selberg, Collected papers, v. I, Springer-Verlag, Berlin, 1989 | MR | Zbl

[3] M. A. Korolev, “Gram's law and Selberg's conjecture on the distribution of zeros of the Riemann zeta function”, Izv. Math., 74:4 (2010), 743–780 | DOI | MR | Zbl

[4] M. A. Korolev, “On Gram's law in the theory of the Riemann zeta-function”, Izv. Math., 76:2 (2012), 275–309 | DOI | DOI | MR | Zbl

[5] M. A. Korolev, “On large distances between consecutive zeros of the Riemann zeta-function”, Izv. Math., 72:2 (2008), 291–304 | DOI | DOI | MR | Zbl

[6] A. Ghosh, “On the Riemann zeta-function – mean value theorems and the distribution of $|S(t)|$”, J. Number Theory, 17:1 (1983), 93–102 | DOI | MR | Zbl