On new results related to Gram's law
Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 917-940.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a number of new results related to Gram's law in the theory of the Riemann zeta-function that reflect irregularity in the distribution of the ordinates of the complex zeros of that function. Results are obtained on the distribution of pairs, triples, quadruples, … of adjacent ordinates of such zeros that simultaneously do not obey Gram's law.
Keywords: Riemann zeta-function, Gram's law, Gram's rule.
@article{IM2_2013_77_5_a1,
     author = {M. A. Korolev},
     title = {On new results related to {Gram's} law},
     journal = {Izvestiya. Mathematics },
     pages = {917--940},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On new results related to Gram's law
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 917
EP  - 940
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/
LA  - en
ID  - IM2_2013_77_5_a1
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On new results related to Gram's law
%J Izvestiya. Mathematics 
%D 2013
%P 917-940
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/
%G en
%F IM2_2013_77_5_a1
M. A. Korolev. On new results related to Gram's law. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 917-940. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a1/

[1] A. Selberg, “The zeta-function and the Riemann hypothesis”, C. R. Dixieme Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, 187–200 | MR | Zbl

[2] A. Selberg, Collected papers, v. I, Springer-Verlag, Berlin, 1989 | MR | Zbl

[3] M. A. Korolev, “Gram's law and Selberg's conjecture on the distribution of zeros of the Riemann zeta function”, Izv. Math., 74:4 (2010), 743–780 | DOI | MR | Zbl

[4] M. A. Korolev, “On Gram's law in the theory of the Riemann zeta-function”, Izv. Math., 76:2 (2012), 275–309 | DOI | DOI | MR | Zbl

[5] M. A. Korolev, “On large distances between consecutive zeros of the Riemann zeta-function”, Izv. Math., 72:2 (2008), 291–304 | DOI | DOI | MR | Zbl

[6] A. Ghosh, “On the Riemann zeta-function – mean value theorems and the distribution of $|S(t)|$”, J. Number Theory, 17:1 (1983), 93–102 | DOI | MR | Zbl