Birationally rigid complete intersections of quadrics and cubics
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 795-845.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the birational superrigidity of generic Fano complete intersections $V$ of type $2^{k_1}\cdot3^{k_2}$ in the projective space ${\mathbb P}^{2k_1+3k_2}$ provided that $k_2\geqslant2$ and $k_1+2k_2=\dim V\geqslant12$, and of certain families of Fano complete intersections of dimensions 10 and 11.
Keywords: Fano variety, complete intersection, birational rigidity, maximal singularity, multiplicity.
@article{IM2_2013_77_4_a8,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid complete intersections of quadrics and cubics},
     journal = {Izvestiya. Mathematics },
     pages = {795--845},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid complete intersections of quadrics and cubics
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 795
EP  - 845
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/
LA  - en
ID  - IM2_2013_77_4_a8
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid complete intersections of quadrics and cubics
%J Izvestiya. Mathematics 
%D 2013
%P 795-845
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/
%G en
%F IM2_2013_77_4_a8
A. V. Pukhlikov. Birationally rigid complete intersections of quadrics and cubics. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 795-845. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/

[1] A. V. Pukhlikov, “Birationally rigid varieties. I. Fano varieties”, Russian Math. Surveys, 62:5 (2007), 857–942 | DOI | DOI | MR | Zbl

[2] A. V. Pukhlikov, “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl

[3] A. V. Pukhlikov, Birationally rigid Fano complete intersections. II, arXiv: 1110.2052

[4] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[5] A. V. Pukhlikov, “Birationally rigid iterated Fano double covers”, Izv. Math., 67:3 (2003), 555–596 | DOI | DOI | MR | Zbl

[6] G. Fano, “Nuove ricerche sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche”, Pont. Acad. Sci. Comment., 11 (1947), 635–720 | MR | Zbl

[7] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 815–868 | DOI | MR | Zbl | Zbl

[8] V. A. Iskovskih, J. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl | Zbl

[9] V. A. Iskovskih, “Birational automorphisms of the Fano 3-fold $V^3_6$”, Soviet Math. Dokl., 18:4 (1978), 948–951 | MR | Zbl

[10] A. V. Pukhlikov, “Maximal singularities on the Fano variety $V^3_6$”, Moscow Univ. Math. Bull., 44:2 (1989), 70–75 | MR | Zbl

[11] V. A. Iskovskikh, A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic manifolds”, J. Math. Sci., 82:4 (1996), 3528–3613 | DOI | MR | Zbl

[12] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl | Zbl

[13] A. N. Tyurin, “The middle Jacobian of three-dimensional varieties”, J. Soviet Math., 13:6 (1980), 707–745 | DOI | MR | Zbl | Zbl

[14] A. Beauville, “Variétés de Prym et jacobiennes intermediaires”, Ann. Sci. Ècole Norm. Sup. (4), 10:3 (1977), 309–391 | MR | Zbl

[15] A. V. Pukhlikov, “Birational isomorphisms of four-dimensional quintics”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl

[16] A. V. Pukhlikov, “Birational automorphisms of a double space and double quadric”, Math. USSR-Izv., 32:1 (1989), 233–243 | DOI | MR | Zbl

[17] I. A. Cheltsov, “Non-rationality of the 4-dimensional smooth complete intersection of a quadric and a quartic not containing planes”, Sb. Math., 194:11 (2003), 1679–1699 | DOI | DOI | MR | Zbl

[18] A. V. Pukhlikov, “Birational geometry of Fano double spaces of index two”, Izv. Math., 74:5 (2010), 925–991 | DOI | DOI | MR | Zbl

[19] J. Kollár, “Flips and abundance for algebraic threefolds” (Utah, Salt Lake City, 1991), Asterisque, 211, Soc. Math. de France, Paris, 1993 | MR | Zbl

[20] A. V. Pukhlikov, “Birationally rigid Fano varieties”, The Fano conference (Torino, Italy, 2002), Univ. Torino, Turin, 2004, 659–681 | MR | Zbl

[21] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano complete intersections”, Manuscripta Math., 121:4 (2006), 491–526 | DOI | MR | Zbl

[22] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano cyclic covers”, Pure Appl. Math. Q., 5:2 (2009), 641–700 | MR | Zbl

[23] A. Gabrielov, A. Khovanskii, “Multiplicity of a Noetherian intersection”, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, 119–131 | MR | Zbl

[24] A. V. Pukhlikov, “On the multiplicity of solutions of a system of algebraic equations”, Proc. Steklov Inst. Math., 276 (2012), 234–249 | DOI | MR

[25] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl