Birationally rigid complete intersections of quadrics and cubics
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 795-845

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the birational superrigidity of generic Fano complete intersections $V$ of type $2^{k_1}\cdot3^{k_2}$ in the projective space ${\mathbb P}^{2k_1+3k_2}$ provided that $k_2\geqslant2$ and $k_1+2k_2=\dim V\geqslant12$, and of certain families of Fano complete intersections of dimensions 10 and 11.
Keywords: Fano variety, complete intersection, birational rigidity, maximal singularity, multiplicity.
@article{IM2_2013_77_4_a8,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid complete intersections of quadrics and cubics},
     journal = {Izvestiya. Mathematics },
     pages = {795--845},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid complete intersections of quadrics and cubics
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 795
EP  - 845
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/
LA  - en
ID  - IM2_2013_77_4_a8
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid complete intersections of quadrics and cubics
%J Izvestiya. Mathematics 
%D 2013
%P 795-845
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/
%G en
%F IM2_2013_77_4_a8
A. V. Pukhlikov. Birationally rigid complete intersections of quadrics and cubics. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 795-845. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/