Birationally rigid complete intersections of quadrics and cubics
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 795-845
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the birational superrigidity of generic Fano complete intersections $V$ of type $2^{k_1}\cdot3^{k_2}$ in the projective space ${\mathbb P}^{2k_1+3k_2}$ provided that $k_2\geqslant2$ and $k_1+2k_2=\dim V\geqslant12$, and of certain families of Fano complete intersections of dimensions 10 and 11.
Keywords:
Fano variety, complete intersection, birational rigidity,
maximal singularity, multiplicity.
@article{IM2_2013_77_4_a8,
author = {A. V. Pukhlikov},
title = {Birationally rigid complete intersections of quadrics and cubics},
journal = {Izvestiya. Mathematics },
pages = {795--845},
publisher = {mathdoc},
volume = {77},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/}
}
A. V. Pukhlikov. Birationally rigid complete intersections of quadrics and cubics. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 795-845. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a8/