Generation of modules and transcendence degree of zero-cycles
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 696-699

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a regular algebra over $\mathbb C$ of dimension $d$ and a projective module of rank $r$ over this algebra which is not generated by $d+r-1$ elements. This strengthens Swan's well-known example over the field of real numbers.
Keywords: modules over rings, Chow groups.
@article{IM2_2013_77_4_a3,
     author = {S. O. Gorchinskiy},
     title = {Generation of modules and transcendence degree of zero-cycles},
     journal = {Izvestiya. Mathematics },
     pages = {696--699},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
TI  - Generation of modules and transcendence degree of zero-cycles
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 696
EP  - 699
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/
LA  - en
ID  - IM2_2013_77_4_a3
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%T Generation of modules and transcendence degree of zero-cycles
%J Izvestiya. Mathematics 
%D 2013
%P 696-699
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/
%G en
%F IM2_2013_77_4_a3
S. O. Gorchinskiy. Generation of modules and transcendence degree of zero-cycles. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 696-699. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/