Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_4_a3, author = {S. O. Gorchinskiy}, title = {Generation of modules and transcendence degree of zero-cycles}, journal = {Izvestiya. Mathematics }, pages = {696--699}, publisher = {mathdoc}, volume = {77}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/} }
S. O. Gorchinskiy. Generation of modules and transcendence degree of zero-cycles. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 696-699. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/
[1] O. Forster, “Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring”, Math. Z., 84:1 (1964), 80–87 | DOI | MR | Zbl
[2] R. G. Swan, “The number of generators of a module”, Math. Z., 102:4 (1967), 318–322 | DOI | MR | Zbl
[3] R. G. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105:2 (1962), 264–277 | DOI | MR | Zbl
[4] S. Gorchinskiy, V. Guletskiǐ, “Transcendence degree of zero-cycles and the structure of Chow motives”, Cent. Eur. J. Math., 10:2 (2012), 559–568 | DOI | MR | Zbl
[5] S. Bloch, V. Srinivas, “Remarks on correspondences and algebraic cycles”, Amer. J. Math., 105:5 (1983), 1235–1253 | DOI | MR | Zbl
[6] V. N. Zhelyabin, “Differential algebras and simple Jordan superalgebras”, Siberian Adv. Math., 20:3 (2010), 223–230 | DOI | MR | Zbl
[7] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, MA, 1973 | MR | Zbl