Generation of modules and transcendence degree of zero-cycles
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 696-699.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a regular algebra over $\mathbb C$ of dimension $d$ and a projective module of rank $r$ over this algebra which is not generated by $d+r-1$ elements. This strengthens Swan's well-known example over the field of real numbers.
Keywords: modules over rings, Chow groups.
@article{IM2_2013_77_4_a3,
     author = {S. O. Gorchinskiy},
     title = {Generation of modules and transcendence degree of zero-cycles},
     journal = {Izvestiya. Mathematics },
     pages = {696--699},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
TI  - Generation of modules and transcendence degree of zero-cycles
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 696
EP  - 699
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/
LA  - en
ID  - IM2_2013_77_4_a3
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%T Generation of modules and transcendence degree of zero-cycles
%J Izvestiya. Mathematics 
%D 2013
%P 696-699
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/
%G en
%F IM2_2013_77_4_a3
S. O. Gorchinskiy. Generation of modules and transcendence degree of zero-cycles. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 696-699. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a3/

[1] O. Forster, “Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring”, Math. Z., 84:1 (1964), 80–87 | DOI | MR | Zbl

[2] R. G. Swan, “The number of generators of a module”, Math. Z., 102:4 (1967), 318–322 | DOI | MR | Zbl

[3] R. G. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105:2 (1962), 264–277 | DOI | MR | Zbl

[4] S. Gorchinskiy, V. Guletskiǐ, “Transcendence degree of zero-cycles and the structure of Chow motives”, Cent. Eur. J. Math., 10:2 (2012), 559–568 | DOI | MR | Zbl

[5] S. Bloch, V. Srinivas, “Remarks on correspondences and algebraic cycles”, Amer. J. Math., 105:5 (1983), 1235–1253 | DOI | MR | Zbl

[6] V. N. Zhelyabin, “Differential algebras and simple Jordan superalgebras”, Siberian Adv. Math., 20:3 (2010), 223–230 | DOI | MR | Zbl

[7] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, MA, 1973 | MR | Zbl