On the derived category of~$\overline{M}_{0,n}$
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 525-540.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Keel's representation and Orlov's theorem, we give an inductive description of the derived category of moduli spaces of $n$-pointed stable curves of genus zero and some full exceptional collections in it. The detailed calculations are given for $\overline{M}_{0,6}$. Bibliography: 16 titles.
Keywords: derived categories.
Mots-clés : moduli spaces
@article{IM2_2013_77_3_a5,
     author = {Yu. I. Manin and M. Smirnov},
     title = {On the derived category of~$\overline{M}_{0,n}$},
     journal = {Izvestiya. Mathematics },
     pages = {525--540},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a5/}
}
TY  - JOUR
AU  - Yu. I. Manin
AU  - M. Smirnov
TI  - On the derived category of~$\overline{M}_{0,n}$
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 525
EP  - 540
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a5/
LA  - en
ID  - IM2_2013_77_3_a5
ER  - 
%0 Journal Article
%A Yu. I. Manin
%A M. Smirnov
%T On the derived category of~$\overline{M}_{0,n}$
%J Izvestiya. Mathematics 
%D 2013
%P 525-540
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a5/
%G en
%F IM2_2013_77_3_a5
Yu. I. Manin; M. Smirnov. On the derived category of~$\overline{M}_{0,n}$. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 525-540. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a5/

[1] Russian Acad. Sci. Izv. Math., 41:1 (1993), 133–141 | DOI | MR | Zbl

[2] S. Keel, “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574 | DOI | MR | Zbl

[3] M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $\overline M_{0,n}$”, J. Algebraic Geom., 2:2 (1993), 239–262 | MR | Zbl

[4] C. Böhning, “Derived categories of coherent sheaves on rational homogeneous manifolds”, Doc. Math., 11 (2006), 261–331 | MR | Zbl

[5] A. I. Bondal, M. Larsen, and V. A. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not., 2004, no. 29, 1461–1495 | DOI | MR | Zbl

[6] B. Keller, “On differential graded categories”, Proc. Internat. Congr. Math. (Madrid, Spain 2006), v. II, Eur. Math. Soc., Zürich, 2006, 151–190 | MR | Zbl

[7] Yu. I. Manin and M. Smirnov, Towards motivic quantum cohomology of $\bar{M}_{0,S}$, arXiv: 1107.4915

[8] S. Keel and J. Tevelev, “Equations for $\overline{M}_{0,n}$”, Internat. J. Math., 20:9 (2009), 1159–1184 | DOI | MR | Zbl

[9] Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl

[10] D. Auroux, L. Katzarkov, and D. Orlov, “Mirror symmetry for Del Pezzo surfaces: vanishing cycles and coherent sheaves”, Invent. Math., 166:3 (2006), 537–582 | DOI | MR | Zbl

[11] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford, 2006 | MR | Zbl

[12] Math. USSR-Sb., 70:1 (1991), 93–107 | DOI | MR | Zbl

[13] V. A. Lunts and D. O. Orlov, “Uniqueness of enhancement for triangulated categories”, J. Amer. Math. Soc., 23:3 (2010), 853–908 | DOI | MR | Zbl

[14] G. Tabuada, Theorie homotopique des DG-categories, arXiv: 0710.4303

[15] Izv. Math., 62:3 (1998), 429–463 | DOI | MR | Zbl

[16] A. Kuznetsov, “Derived categories of cubic fourfolds”, Cohomological and geometric approaches to rationality problems, Progr. Math., 282, Birkhäuser, Boston, MA, 2010, 219–243 | MR | Zbl