Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_3_a4, author = {I. V. Dolgachev and Sh. Kondo}, title = {The rationality of the moduli spaces {of~Coble} surfaces and of nodal {Enriques} surfaces}, journal = {Izvestiya. Mathematics }, pages = {509--524}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a4/} }
TY - JOUR AU - I. V. Dolgachev AU - Sh. Kondo TI - The rationality of the moduli spaces of~Coble surfaces and of nodal Enriques surfaces JO - Izvestiya. Mathematics PY - 2013 SP - 509 EP - 524 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a4/ LA - en ID - IM2_2013_77_3_a4 ER -
I. V. Dolgachev; Sh. Kondo. The rationality of the moduli spaces of~Coble surfaces and of nodal Enriques surfaces. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 509-524. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a4/
[1] S. Kondō, “The rationality of the moduli space of Enriques surfaces”, Compositio Math., 91:2 (1994), 159–173 | MR | Zbl
[2] T. Miyata, “Invariants of certain groups. I”, Nagoya Math. J., 41 (1971), 69–73 | MR | Zbl
[3] Moscow Univ. Math. Bull., 37:2 (1982), 27–29 | MR | Zbl
[4] S. Ma, Rationality of the moduli spaces of $2$-elementary $\mathrm{K3}$ surfaces, to appear in J. Algebraic Geom., arXiv: 1110.5110
[5] J. Math. Sci., 81:3 (1996), 2599–2630 | DOI | MR | Zbl
[6] Y. Namikawa, “Periods of Enriques surfaces”, Math. Ann., 270:2 (1985), 201–222 | DOI | MR | Zbl
[7] Soviet Math. Dokl., 30:1 (1984), 282–285 | MR | Zbl
[8] I. V. Dolgachev and D.-Q. Zhang, “Coble rational surfaces”, Amer. J. Math., 123:1 (2001), 79–114 | DOI | MR | Zbl
[9] A. B. Coble, Algebraic geometry and theta functions, Amer. Math. Soc., New York, 1929 | MR | Zbl
[10] S. Cantat and I. Dolgachev, “Rational surfaces with a large group of automorphisms”, J. Amer. Math. Soc., 25:3 (2012), 863–905 | DOI | MR | Zbl
[11] A. Coble, “The ten nodes of the rational sextic and of the Cayley symmetroid”, Amer. J. Math., 41:4 (1919), 243–265 | DOI | MR | Zbl
[12] Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl | Zbl
[13] Math. USSR-Izv., 5:3 (1971), 547–588 | DOI | MR | Zbl | Zbl
[14] D. R. Morrison and M.-H. Saito, “Cremona transformations and degrees of period maps for $\mathrm{K3}$ surfaces with ordinary double points”, Algebraic geometry (Sendai, Japan 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 477–513 | MR | Zbl
[15] J. Soviet Math., 22:4 (1983), 1401–1475 | DOI | Zbl
[16] F. Cossec, “Reye congruences”, Trans. Amer. Math. Soc., 280:2 (1983), 737–751 | DOI | MR | Zbl
[17] F. R. Cossec and I. V. Dolgachev, Enriques surfaces, v. I, Progr. Math., 76, Birkhäuser, Boston, MA, 1989 | MR | Zbl
[18] W. Barth and C. Peters, “Automorphisms of Enriques surfaces”, Invent. Math., 73:3 (1983), 383–411 | DOI | MR | Zbl
[19] F. Cossec and I. Dolgachev, “On automorphisms of nodal Enriques surfaces”, Bull. Amer. Math. Soc., 12:2 (1985), 247–249 | DOI | MR | Zbl
[20] F. Catanese, “On the rationality of certain moduli spaces related to curves of genus 4”, Algebraic geometry (Ann Arbor, MI 1981), Lecture Notes in Math., 1008, Springer-Verlag, Berlin, 1983, 30–50 | DOI | MR | Zbl
[21] A. Beauville, “Variétés de Prym et jacobiennes intermediaires”, Ann. Sci. École Norm. Sup. (4), 10:3 (1977), 309–391 | MR | Zbl
[22] I. Dolgachev, “Enriques surfaces: what is left?”, Problems in the theory of surfaces and their classification (Cortona 1988), Sympos. Math., 32, Academic Press, London, 1991, 81–97 | MR | Zbl