Blow-up of solutions of strongly dissipative generalized Klein--Gordon equations
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 325-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of sufficient conditions for blow-up of solutions of a model initial-boundary value problem. We use a modified form of Levine's method to obtain sufficient conditions for blow-up in finite time.
Keywords: blow-up, non-linear Klein–Gordon equations
Mots-clés : Sobolev-type equations.
@article{IM2_2013_77_2_a4,
     author = {M. O. Korpusov},
     title = {Blow-up of solutions of strongly dissipative generalized {Klein--Gordon} equations},
     journal = {Izvestiya. Mathematics },
     pages = {325--353},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blow-up of solutions of strongly dissipative generalized Klein--Gordon equations
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 325
EP  - 353
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a4/
LA  - en
ID  - IM2_2013_77_2_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blow-up of solutions of strongly dissipative generalized Klein--Gordon equations
%J Izvestiya. Mathematics 
%D 2013
%P 325-353
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a4/
%G en
%F IM2_2013_77_2_a4
M. O. Korpusov. Blow-up of solutions of strongly dissipative generalized Klein--Gordon equations. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 325-353. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a4/

[1] M. B. Vinogradova, O. V. Rudenko, A. P. Sukhorukov, Teoriya voln, Nauka, M., 1990 | MR | Zbl

[2] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-A u+ \mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[3] B. Straughan, “Further global nonexistence theorems for abstract nonlinear wave equations”, Proc. Amer. Math. Soc., 48 (1975), 381–390 | DOI | MR | Zbl

[4] H. A. Levine, G. Todorova, “Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy”, Proc. Amer. Math. Soc., 129 (2001), 793–805 | DOI | MR | Zbl

[5] P. Pucci, J. Serrin, “Some new results on global nonexistence for abstract evolution with positive initial energy”, Topol. Methods Nonlinear Anal., 10:2 (1997), 241–247 | MR | Zbl

[6] P. Pucci, J. Serrin, “Global nonexistence for abstract evolution equations with positive initial energy”, J. Differential Equations, 150:1 (1998), 203–214 | DOI | MR | Zbl

[7] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl

[8] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, de Gruyter, Berlin, 2011 | DOI | MR | Zbl

[9] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl

[10] V. A. Galaktionov, E. Mitidieri, S. I. Pohozaev, “On global solutions and blow-up for Kuramoto–Sivashinsky-type models, and well-posed Burnett equations”, Nonlinear Anal., 70:8 (2009), 2930–2952 | DOI | MR | Zbl

[11] S. I. Pohozaev, “Critical nonlinearities in partial differential equations”, Milan J. Math., 77:1 (2009), 127–150 | DOI | MR | Zbl

[12] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl

[13] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl

[14] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[15] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964 | MR | Zbl | Zbl

[16] V. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl

[17] O. A. Lima, A. T. Lourendo, A. O. Marino, “Weak solutions for a strongly-coupled nonlinear system”, Electron. J. Differential Equations, 2006, 180 | MR | Zbl

[18] O. A. Lima, M. R. Clark, “On a class of nonlinear Klein–Gordon equations”, Proceedings of 52 Seminario Brasileiro de Analise, 2000, 445–451