Asymptotics of the monodromy transformation in certain classes of monodromy germs
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 253-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the second term of the asymptotics of the monodromy transformation of a monodromic singular point of an analytic vector field on a plane whose Newton diagram consists of one or two edges. In the cases under consideration the principal term of the monodromy transformation coincides with the identity function. The case of two edges is characterized by the fact that, as a result of blowing up the singularity by the Newton diagram, a singular point emerges that is a degenerate saddle. The results obtained make it possible to state a sufficient condition for the existence of a focus and to construct the stability boundary in the classes of vector fields under consideration.
Keywords: blowing up singularities, focus
Mots-clés : monodromic singular point, centre, monodromy transformation.
@article{IM2_2013_77_2_a1,
     author = {A. S. Voronin and N. B. Medvedeva},
     title = {Asymptotics of the monodromy transformation in certain classes of monodromy germs},
     journal = {Izvestiya. Mathematics },
     pages = {253--270},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a1/}
}
TY  - JOUR
AU  - A. S. Voronin
AU  - N. B. Medvedeva
TI  - Asymptotics of the monodromy transformation in certain classes of monodromy germs
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 253
EP  - 270
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a1/
LA  - en
ID  - IM2_2013_77_2_a1
ER  - 
%0 Journal Article
%A A. S. Voronin
%A N. B. Medvedeva
%T Asymptotics of the monodromy transformation in certain classes of monodromy germs
%J Izvestiya. Mathematics 
%D 2013
%P 253-270
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a1/
%G en
%F IM2_2013_77_2_a1
A. S. Voronin; N. B. Medvedeva. Asymptotics of the monodromy transformation in certain classes of monodromy germs. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 253-270. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a1/

[1] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Dynamical systems I, Encyclopaedia Math. Sci., Springer-Verlag, Berlin, 1988, 1–148 | MR | MR | Zbl

[2] Yu. S. Il'yashenko, “Dulac's memoir “On limit cycles” and related problems of the local theory of differential equations”, Russian Math. Surveys, 40:6 (1985), 1–49 | DOI | MR | Zbl

[3] N. B. Medvedeva, “Principal term of the monodromy transformation of a monodromic singular point is linear”, Siberian Math. J., 33:2 (1992), 280–288 | DOI | MR | Zbl

[4] N. B. Medvedeva, E. V. Mazaeva, “A sufficient condition for a focus for a monodromic singular point”, Trans. Moscow Math. Soc., 2002 (2002), 77–103 | MR | Zbl

[5] F. S. Berezovskaya, N. B. Medvedeva, “The asymptotics of the return map of a singular point with fixed Newton diagram”, J. Soviet Math., 60:6 (1992), 1765–1781 | DOI | MR | MR | Zbl | Zbl

[6] A. S. Voronin, N. B. Medvedeva, “Ustoichivost monodromnykh osobykh tochek s fiksirovannoi diagrammoi Nyutona”, Vestn. Udmurtskogo un-ta. Ser. matem., mekh., komp. nauki, 3 (2009), 34–49

[7] A. S. Voronin, N. B. Medvedeva, “Asimptotika preobrazovaniya monodromii v sluchae dvukh chetnykh reber diagrammy Nyutona”, Vestn. ChelGU, Ser. 3. Matem., mekh., inform., 27(242):14 (2011), 12–26

[8] A. D. Bruno, Local methods in nonlinear differential equations, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1989 | MR | MR | Zbl | Zbl

[9] V. P. Varin, “Poincaré map for some polynomial systems of differential equations”, Sb. Math., 195:7 (2004), 917–934 | DOI | DOI | MR | Zbl

[10] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Dover, New York, 1953 | MR | MR | Zbl

[11] N. B. Medvedeva, “On the analytic solvability of the problem of distinguishing between center and focus”, Proc. Steklov Inst. Math., 254 (2006), 7–93 | DOI | MR

[12] N. B. Medvedeva, “A monodromy criterion for a singular point of a vector field on the plane”, St. Petersburg Math. J., 13:2 (2002), 253–268 | MR | Zbl

[13] N. B. Medvedeva, “Problema razlicheniya tsentra i fokusa v klasse rostkov s dvumya rebrami diagrammy Nyutona”, Vestn. ChelGU, Ser. 3. Matem., mekh., inform., 3:9 (2003), 86–110 | MR