Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 44-86

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the isometry groups of semi-orthogonal forms (that is, forms whose Gram matrix in some basis is upper triangular with ones on the diagonal) on a $\mathbb Z$-module of rank 3. Such forms have a discrete parameter: the height (the trace of the dualizing operator + 3). We prove that the isometry group is either $\mathbb Z$ or $\mathbb Z_2\times\mathbb Z$, list all the cases when it is a direct product and describe the generator of order 2 in that case. We also describe a generator of infinite order for many particular values of the height.
Keywords: quadratic forms on modules over rings.
@article{IM2_2013_77_1_a4,
     author = {S. A. Kuleshov},
     title = {Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3},
     journal = {Izvestiya. Mathematics },
     pages = {44--86},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a4/}
}
TY  - JOUR
AU  - S. A. Kuleshov
TI  - Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 44
EP  - 86
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a4/
LA  - en
ID  - IM2_2013_77_1_a4
ER  - 
%0 Journal Article
%A S. A. Kuleshov
%T Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3
%J Izvestiya. Mathematics 
%D 2013
%P 44-86
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a4/
%G en
%F IM2_2013_77_1_a4
S. A. Kuleshov. Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 44-86. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a4/