Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 44-86
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the isometry groups of semi-orthogonal forms (that is, forms
whose Gram matrix in some basis is upper triangular with ones on the
diagonal) on a $\mathbb Z$-module of rank 3. Such forms have a discrete
parameter: the height (the trace of the dualizing operator + 3). We prove
that the isometry group is either $\mathbb Z$ or
$\mathbb Z_2\times\mathbb Z$, list all the cases when it is
a direct product and describe the generator of order 2 in that case.
We also describe a generator of infinite order for many particular
values of the height.
Keywords:
quadratic forms on modules over rings.
@article{IM2_2013_77_1_a4,
author = {S. A. Kuleshov},
title = {Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3},
journal = {Izvestiya. Mathematics },
pages = {44--86},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a4/}
}
S. A. Kuleshov. Isometries of semi-orthogonal forms on a~$\mathbb Z$-module of rank~3. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 44-86. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a4/