Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1257-1270.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider function systems obtained using translates and dilates of a single function in multidimensional spaces $E_{\varphi}$.
Keywords: generalized Orlicz classes, generalized Orlicz spaces, representation systems, approximation in spaces $E_{\varphi}$, function systems of translates and dilates of a single function.
@article{IM2_2012_76_6_a9,
     author = {V. I. Filippov},
     title = {Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$},
     journal = {Izvestiya. Mathematics },
     pages = {1257--1270},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1257
EP  - 1270
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/
LA  - en
ID  - IM2_2012_76_6_a9
ER  - 
%0 Journal Article
%A V. I. Filippov
%T Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$
%J Izvestiya. Mathematics 
%D 2012
%P 1257-1270
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/
%G en
%F IM2_2012_76_6_a9
V. I. Filippov. Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1257-1270. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/

[1] V. I. Filippov, “Function systems obtained using translates and dilates of a single function in the paces $E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$”, Izv. Math., 65:2 (2001), 389–402 | DOI | MR | Zbl

[2] P. L. Ul'yanov, “Representation of functions by series and classes $\varphi(L)$”, Russian Math. Surveys, 27:2 (1972), 1–54 | DOI | MR | Zbl

[3] P. L. Ul'yanov, “Remarks on mean convergence”, Math. Notes, 21:6 (1977), 455–461 | DOI | MR | Zbl | Zbl

[4] V. I. Filippov, P. Oswald, “Representation in $L^p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[5] V. I. Filippov, “On the completeness and other properties of some function systems in $L_p$, $0

\infty$”, J. Approx. Theory, 94:1 (1998), 42–53 | DOI | MR | Zbl

[6] V. I. Filippov, “On subsystems of the Faber–Schauder system in functional spaces”, Soviet Math. (Iz. VUZ), 35:2 (1991), 90–97 | MR | Zbl

[7] R. E. Zink, “On a theorem of Goffman concerning Schauder series”, Proc. Amer. Math. Soc., 21:3 (1969), 523–529 | DOI | MR | Zbl

[8] V. G. Krotov, “Representation of measurable functions by series in the Faber–Schauder system, and universal series”, Math. USSR-Izv., 11:1 (1977), 205–218 | DOI | MR | Zbl | Zbl

[9] V. I. Filippov, “Linear continuous functionals and representation of functions by series in the spaces $E_{\varphi}$”, Anal. Math., 27:4 (2001), 239–260 | DOI | MR | Zbl

[10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[11] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl

[12] A. A. Talaljan, “On approximation properties of certain incomplete systems”, Math. USSR-Sb., 43:4 (1982), 443–471 | DOI | MR | Zbl | Zbl