Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_6_a9, author = {V. I. Filippov}, title = {Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$}, journal = {Izvestiya. Mathematics }, pages = {1257--1270}, publisher = {mathdoc}, volume = {76}, number = {6}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/} }
TY - JOUR AU - V. I. Filippov TI - Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$ JO - Izvestiya. Mathematics PY - 2012 SP - 1257 EP - 1270 VL - 76 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/ LA - en ID - IM2_2012_76_6_a9 ER -
%0 Journal Article %A V. I. Filippov %T Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$ %J Izvestiya. Mathematics %D 2012 %P 1257-1270 %V 76 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/ %G en %F IM2_2012_76_6_a9
V. I. Filippov. Representation systems obtained using translates and dilates of a~single function in multidimensional spaces $E_{\varphi}$. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1257-1270. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a9/
[1] V. I. Filippov, “Function systems obtained using translates and dilates of a single function in the paces $E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$”, Izv. Math., 65:2 (2001), 389–402 | DOI | MR | Zbl
[2] P. L. Ul'yanov, “Representation of functions by series and classes $\varphi(L)$”, Russian Math. Surveys, 27:2 (1972), 1–54 | DOI | MR | Zbl
[3] P. L. Ul'yanov, “Remarks on mean convergence”, Math. Notes, 21:6 (1977), 455–461 | DOI | MR | Zbl | Zbl
[4] V. I. Filippov, P. Oswald, “Representation in $L^p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[5] V. I. Filippov, “On the completeness and other properties of some function systems in $L_p$, $0
\infty$”, J. Approx. Theory, 94:1 (1998), 42–53 | DOI | MR | Zbl[6] V. I. Filippov, “On subsystems of the Faber–Schauder system in functional spaces”, Soviet Math. (Iz. VUZ), 35:2 (1991), 90–97 | MR | Zbl
[7] R. E. Zink, “On a theorem of Goffman concerning Schauder series”, Proc. Amer. Math. Soc., 21:3 (1969), 523–529 | DOI | MR | Zbl
[8] V. G. Krotov, “Representation of measurable functions by series in the Faber–Schauder system, and universal series”, Math. USSR-Izv., 11:1 (1977), 205–218 | DOI | MR | Zbl | Zbl
[9] V. I. Filippov, “Linear continuous functionals and representation of functions by series in the spaces $E_{\varphi}$”, Anal. Math., 27:4 (2001), 239–260 | DOI | MR | Zbl
[10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl
[11] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl
[12] A. A. Talaljan, “On approximation properties of certain incomplete systems”, Math. USSR-Sb., 43:4 (1982), 443–471 | DOI | MR | Zbl | Zbl