Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1218-1256.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a little-known boundary-value problem of linear conjugation in the theory of functions of a complex variable in multiply connected domains. Although it was posed in a general form by Markushevich in 1946 and used in Vekua's geometric studies, it is still poorly understood. The problem is ill-posed: it loses solubility after arbitrarily small perturbations of the coefficient. Under certain simple conditions, we solve the problem completely by establishing necessary and sufficient criteria for its solubility and giving a construction for its solutions.
Keywords: holomorphic and meromorphic functions, linear conjugation problem, ill-posedness of a problem, index, solubility conditions.
@article{IM2_2012_76_6_a8,
     author = {I. Kh. Sabitov},
     title = {Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries},
     journal = {Izvestiya. Mathematics },
     pages = {1218--1256},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a8/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1218
EP  - 1256
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a8/
LA  - en
ID  - IM2_2012_76_6_a8
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries
%J Izvestiya. Mathematics 
%D 2012
%P 1218-1256
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a8/
%G en
%F IM2_2012_76_6_a8
I. Kh. Sabitov. Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1218-1256. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a8/

[1] A. I. Markushevich, “Ob odnoi granichnoi zadache teorii analiticheskikh funktsii”, Uchenye zapiski MGU, 1946, no. 100, 20–30

[2] E. I. Zverovich, G. S. Litvinchuk, “Odnostoronnie kraevye zadachi teorii analiticheskikh funktsii”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1003–1036 | MR | Zbl

[3] I. N. Vekua, Generalized analytic functions, Pergamon, London–Paris–Frankfurt; Addison-Wesley, Reading, MA, 1962 | MR | MR | Zbl | Zbl

[4] N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl | Zbl

[5] F. D. Gakhov, Boundary value problems, Pergamon, London–Paris–Frankfurt; Addison-Wesley, Reading, MA, 1966 | MR | MR | Zbl | Zbl

[6] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl