Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_6_a4, author = {I. B. Kaygorodov}, title = {On $\delta$-derivations of $n$-ary algebras}, journal = {Izvestiya. Mathematics }, pages = {1150--1162}, publisher = {mathdoc}, volume = {76}, number = {6}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a4/} }
I. B. Kaygorodov. On $\delta$-derivations of $n$-ary algebras. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1150-1162. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a4/
[1] N. C. Hopkins, “Generalized derivations of nonassociative algebras”, Nova J. Math. Game Theory Algebra, 5:3 (1996), 215–224 | MR | Zbl
[2] V. T. Filippov, “Lie algebras satisfying identities of degree 5”, Algebra and Logic, 34:6 (1995), 379–394 | DOI | MR | Zbl
[3] V. T. Filippov, “On $\delta$-derivations of Lie algebras”, Siberian Math. J., 39:6 (1998), 1218–1230 | DOI | MR | Zbl
[4] V. T. Filippov, “$\delta$-derivations of prime Lie algebras”, Siberian Math. J., 40:1 (1999), 174–184 | DOI | MR | Zbl
[5] V. T. Filippov, “$\delta$-derivations of prime alternative and Mal'tsev algebras”, Algebra and Logic, 39:5 (2000), 354–358 | DOI | MR | Zbl
[6] N. B. Kaygorodov, “$\delta$-Derivations of simple finite-dimensional Jordan superalgebras”, Algebra and Logic, 46:5 (2007), 318–329 | DOI | MR | Zbl
[7] N. B. Kaygorodov, “$\delta$-derivations of classical Lie superalgebras”, Siberian Math. J., 50:3 (2009), 434–449 | DOI | MR | Zbl
[8] N. B. Kaygorodov, “$\delta$-Superderivations of simple finite-dimensional Jordan and Lie superalgebras”, Algebra and Logic, 49:2 (2010), 130–144 | DOI | MR | Zbl
[9] P. Zusmanovich, “On $\delta$-derivations of Lie algebras and superalgebras”, J. Algebra, 324:12 (2010), 3470–3486 | DOI | MR | Zbl
[10] V. N. Zhelyabin, N. B. Kaygorodov, “On $\delta$-superderivations of simple superalgebras of Jordan brackets”, St. Petersburg Math. J., 23:4 (2012), 665–677 | DOI | MR
[11] N. B. Kaygorodov, “$\delta$-Superderivations of semisimple finite-dimensional Jordan superalgebras”, Math. Notes, 91:2 (2012), 187–197 | DOI
[12] Y. Nambu, “Generalized Hamiltonian dynamics”, Phys. Rev. D (3), 7:8 (1973), 2405–2412 | DOI | MR | Zbl
[13] N. G. Pletnev, “Filippov–Nambu $n$-algebras relevant to physics”, Sib. elektron. matem. izv., 6 (2009), 272–311 | MR
[14] J. A. de Azcárraga, J. M. Izquierdo, “$n$-ary algebras: a review with applications”, J. Phys. A, 43:29 (2010), ID 293001 | DOI | Zbl
[15] J. Bagger, N. Lambert, “Three-algebras and $N=6$ Chern–Simons gauge theories”, Phys. Rev. D, 79:2 (2009), 025002 | DOI | MR | Zbl
[16] J. Bagger, G. Bruhn, Three-algebras in $N=5,6$ superconformal Chern–Simons theories: representations and relations, arXiv: 1006.0040
[17] D. Gaiotto, E. Witten, “Janus configurations, Chern–Simons couplings, and the $\theta$-angle in $N=4$ super Yang–Mills theory”, J. High Energy Phys., 2010, no. 6, 97 | DOI | MR
[18] N. Cantarini, V. G. Kac, “Classification of linearly compact simple algebraic $N=6$ 3-algebras”, Transform. Groups, 16:3 (2011), 649–671 | DOI | MR | Zbl
[19] P. de Medeiros, J. Figueroa-O'Farrill, E. Méndez-Escobar, P. Ritter, “On the Lie-algebraic origin of metric $3$-algebras”, Comm. Math. Phys., 290:3 (2009), 871–902 | DOI | MR | Zbl
[20] V. T. Filippov, “$n$-Lie algebras”, Siberian Math. J., 26:6 (1985), 879–891 | DOI | MR | Zbl | Zbl
[21] W. Ling, On the structure of $n$-Lie algebras, Thesis, Siegen University-GHS-Siegen, 1993 | Zbl
[22] A. P. Pozhidaev, “$n$-ary Mal'tsev algebras”, Algebra and Logic, 40:3 (2001), 170–182 | DOI | MR | Zbl
[23] A. P. Pozhidaev, P. Saraiva, “On derivations of the ternary Malcev algebra $M_8$”, Comm. Algebra, 34:10 (2006), 3593–3608 | DOI | MR | Zbl
[24] A. P. Pozhidaev, “Root decomposition of the ternary Malcev algebra $M_8$”, Siberian Math. J., 46:4 (2005), 717–721 | DOI | MR | Zbl
[25] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl
[26] I. B. Kaygorodov, “$(n+1)$-Ary derivations of simple $n$-ary algebras”, Algebra and Logic, 50:5 (2011), 470–471 | DOI | MR
[27] I. Kaygorodov, “$\delta$-derivations of algebras and superalgebras”, Proceedings of the International Conference on Algebra 2010, Advances in Algebraic Structures (Gadjah Mada University, Indonesia, 2010), World Scientific, Hackensack, NJ, 2012, 374–380