A note on coverings with special fibres and monodromy group $S_{d}$
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1110-1115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider branched coverings of degree $d$ over $Y$ with monodromy group $S_{d}$, $k$ points of simple branching, $n-k$ special points and fixed branching data at the special points, where $Y$ is a smooth connected complex projective curve of genus $g\geqslant1$, and $n$$k$ are integers with $n>k>0$. We prove that the corresponding Hurwitz spaces are irreducible if $k>3d-3$.
Keywords: Hurwitz spaces, special fibres, branched coverings, braid moves.
Mots-clés : monodromy
@article{IM2_2012_76_6_a2,
     author = {F. Vetro},
     title = {A note on coverings with special fibres and monodromy group $S_{d}$},
     journal = {Izvestiya. Mathematics },
     pages = {1110--1115},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/}
}
TY  - JOUR
AU  - F. Vetro
TI  - A note on coverings with special fibres and monodromy group $S_{d}$
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1110
EP  - 1115
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/
LA  - en
ID  - IM2_2012_76_6_a2
ER  - 
%0 Journal Article
%A F. Vetro
%T A note on coverings with special fibres and monodromy group $S_{d}$
%J Izvestiya. Mathematics 
%D 2012
%P 1110-1115
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/
%G en
%F IM2_2012_76_6_a2
F. Vetro. A note on coverings with special fibres and monodromy group $S_{d}$. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1110-1115. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/

[1] A. Hurwitz, “Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39:1 (1891), 1–60 | DOI | MR | Zbl

[2] I. Berstein, A. L. Edmonds, “On the classification of generic branched coverings of surfaces”, Illinois J. Math., 28:1 (1984), 64–82 | MR | Zbl

[3] V. Kanev, Irreducibility of Hurwitz spaces, Preprint No 241, Dipartimento di Matematica ed Applicazioni, Università di Palermo, 2004; arXiv: math/0509154

[4] P. Kluitmann, “Hurwitz action and finite quotients of braid groups”, Braids (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 299–325 | MR | Zbl

[5] V. S. Kulikov, “Factorization semigroups and irreducible components of the Hurwitz space”, Izv. Math., 75:4 (2011), 711–748 | DOI | MR | Zbl

[6] S. Mochizuki, “The geometry of the compactification of the Hurwitz scheme”, Publ. Res. Inst. Math. Sci., 31:3 (1995), 355–441 | DOI | MR | Zbl

[7] S. M. Natanzon, “Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves”, Selecta Math. Soviet., 12:3 (1993), 251–291 | MR | MR | Zbl | Zbl

[8] F. Vetro, “Irreducibility of Hurwitz spaces of coverings with one special fiber”, Indag. Math. (N.S.), 17:1 (2006), 115–127 | DOI | MR | Zbl

[9] B. Wajnryb, “Orbits of Hurwitz action for coverings of a sphere with two special fibers”, Indag. Math. (N.S.), 7:4 (1996), 549–558 | DOI | MR | Zbl

[10] W. Fulton, “Hurwitz schemes and irreducibility of moduli of algebraic curves”, Ann. of Math. (2), 10 (1969), 542–575 | DOI | MR | Zbl

[11] T. Graber, J. Harris, J. Starr, A note on Hurwitz schemes of covers of a positive genus curve, arXiv: math/0205056

[12] J. S. Birman, “On braid groups”, Comm. Pure Appl. Math., 22:1 (1969), 41–72 | DOI | MR | Zbl

[13] E. Fadell, L. Neuwirth, “Configuration spaces”, Math. Scand., 10 (1962), 111–118 | MR | Zbl

[14] G. P. Scott, “Braid groups and the group of homeomorphisms of a surface”, Proc. Cambridge Philos. Soc., 68:3 (1970), 605–617 | DOI | MR | Zbl

[15] T. Graber, J. Harris, J. Starr, “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2003), 57–67 | DOI | MR | Zbl