A note on coverings with special fibres and monodromy group $S_{d}$
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1110-1115
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider branched coverings of degree $d$ over $Y$ with monodromy group $S_{d}$, $k$ points of simple branching, $n-k$ special points and fixed branching data at the special points, where $Y$ is a smooth connected complex projective curve of genus $g\geqslant1$, and $n$, $k$ are integers with $n>k>0$. We prove that the corresponding Hurwitz spaces are irreducible if $k>3d-3$.
Keywords:
Hurwitz spaces, special fibres, branched coverings, braid moves.
Mots-clés : monodromy
Mots-clés : monodromy
@article{IM2_2012_76_6_a2,
author = {F. Vetro},
title = {A note on coverings with special fibres and monodromy group $S_{d}$},
journal = {Izvestiya. Mathematics },
pages = {1110--1115},
publisher = {mathdoc},
volume = {76},
number = {6},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/}
}
F. Vetro. A note on coverings with special fibres and monodromy group $S_{d}$. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1110-1115. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/