A note on coverings with special fibres and monodromy group $S_{d}$
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1110-1115

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider branched coverings of degree $d$ over $Y$ with monodromy group $S_{d}$, $k$ points of simple branching, $n-k$ special points and fixed branching data at the special points, where $Y$ is a smooth connected complex projective curve of genus $g\geqslant1$, and $n$$k$ are integers with $n>k>0$. We prove that the corresponding Hurwitz spaces are irreducible if $k>3d-3$.
Keywords: Hurwitz spaces, special fibres, branched coverings, braid moves.
Mots-clés : monodromy
@article{IM2_2012_76_6_a2,
     author = {F. Vetro},
     title = {A note on coverings with special fibres and monodromy group $S_{d}$},
     journal = {Izvestiya. Mathematics },
     pages = {1110--1115},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/}
}
TY  - JOUR
AU  - F. Vetro
TI  - A note on coverings with special fibres and monodromy group $S_{d}$
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1110
EP  - 1115
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/
LA  - en
ID  - IM2_2012_76_6_a2
ER  - 
%0 Journal Article
%A F. Vetro
%T A note on coverings with special fibres and monodromy group $S_{d}$
%J Izvestiya. Mathematics 
%D 2012
%P 1110-1115
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/
%G en
%F IM2_2012_76_6_a2
F. Vetro. A note on coverings with special fibres and monodromy group $S_{d}$. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1110-1115. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a2/