On some properties of classes of events for which the conditions
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1271-1285.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that, if a system of events $S$ does not satisfy the conditions for the uniform convergence of the relative frequencies to probabilities, that is, if the limit entropy per symbol is greater than zero, then there is necessarily an event $T$ having the following two properties: if $x^l$ is an independent random sample and $x^l(T)$ is the part of $x^l$ belonging to $T$, then the system of events induces all possible subsamples on $x^l(T)$ with probability $1$, and the probability measure of $T$ is precisely equal to the limit entropy per symbol.
Keywords: uniform convergence of related frequencies to probabilities, entropy, index of a system of sets with respect to a sample.
@article{IM2_2012_76_6_a10,
     author = {A. Ya. Chervonenkis},
     title = {On some properties of classes of events for which the conditions},
     journal = {Izvestiya. Mathematics },
     pages = {1271--1285},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a10/}
}
TY  - JOUR
AU  - A. Ya. Chervonenkis
TI  - On some properties of classes of events for which the conditions
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1271
EP  - 1285
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a10/
LA  - en
ID  - IM2_2012_76_6_a10
ER  - 
%0 Journal Article
%A A. Ya. Chervonenkis
%T On some properties of classes of events for which the conditions
%J Izvestiya. Mathematics 
%D 2012
%P 1271-1285
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a10/
%G en
%F IM2_2012_76_6_a10
A. Ya. Chervonenkis. On some properties of classes of events for which the conditions. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1271-1285. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a10/

[1] V. N. Vapnik, A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities”, Theor. Probability Appl., 16:2 (1963), 264–280 | DOI | MR | Zbl

[2] M. Talagrand, “The Glivenko–Cantelli problem”, Ann. Probab., 15:3 (1987), 837–870 | DOI | MR | Zbl

[3] M. Talagrand, “The Glivenko–Cantelli problem, ten years later”, J. Theoret. Probab., 9:2 (1996), 371–384 | DOI | MR | Zbl

[4] R. M. Dudley, “A course on empirical processes”, École d'été de probabilités de Saint-Flour, XII–1982, Lecture Notes in Math., 1097, Springer-Verlag, Berlin, 1984, 1–142 | DOI | MR | Zbl

[5] E. Giné, J. Zinn, “Some limit theorems for empirical processes”, Ann. Probab., 12:4 (1984), 929–989 | DOI | MR | Zbl

[6] A. A. Borovkov, Mathematical statistics, Gordon and Breach, Amsterdam, 1998 | MR | MR | Zbl | Zbl