Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 907-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider problems related to the well-known conjecture on the degrees of irreducible polynomial integrals of a reversible Hamiltonian system with two degrees of freedom and toral position space. The main object of study is a special system arising in the analysis of irreducible polynomial integrals of degree 4. In a particular case we have the problem of the motion of two interacting particles on a circle in given potential fields. We prove that if the three potentials are smooth non-constant functions, then this problem has no non-trivial polynomial integrals of arbitrarily high degree. We prove the conjecture completely for systems with a polynomial first integral of degree 4 in the momenta.
Keywords: irreducible integrals, systems with impacts, spectrum of a potential.
@article{IM2_2012_76_5_a2,
     author = {N. V. Denisova and V. V. Kozlov and D. V. Treschev},
     title = {Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space},
     journal = {Izvestiya. Mathematics },
     pages = {907--921},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a2/}
}
TY  - JOUR
AU  - N. V. Denisova
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 907
EP  - 921
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a2/
LA  - en
ID  - IM2_2012_76_5_a2
ER  - 
%0 Journal Article
%A N. V. Denisova
%A V. V. Kozlov
%A D. V. Treschev
%T Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space
%J Izvestiya. Mathematics 
%D 2012
%P 907-921
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a2/
%G en
%F IM2_2012_76_5_a2
N. V. Denisova; V. V. Kozlov; D. V. Treschev. Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 907-921. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a2/

[1] V. V. Kozlov, N. V. Denisova, “Polynomial integrals of geodesic flows on a two-dimensional torus”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 469–481 | DOI | MR | Zbl

[2] N. V. Denisova, V. V. Kozlov, “Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space”, Sb. Math., 191:2 (2000), 189–208 | DOI | MR | Zbl

[3] A. E. Mironov, “On polynomial integrals of a mechanical system on a two-dimensional torus”, Izv. Math., 74:4 (2010), 805–817 | DOI | MR | Zbl

[4] M. A. Olshanetsky, A. M. Perelomov, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras”, Invent. Math., 37:2 (1976), 93–108 | DOI | MR | Zbl

[5] G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949 | MR | Zbl

[6] V. V. Kozlov, D. V. Treshchëv, “On the integrability of hamiltonian systems with toral position space”, Math. USSR-Sb., 63:1 (1989), 121–139 | DOI | MR | Zbl

[7] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996 | MR | MR | Zbl | Zbl

[8] G. Bozis, “Compatibility conditions for a nonquadratic integral of motion”, Celestial Mech., 28:4 (1982), 367–380 | DOI | MR | Zbl