The discriminant locus of a~system of $n$ Laurent polynomials in $n$ variables
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 881-906.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of $n$ algebraic equations in $n$ variables, where the exponents of the monomials in each equation are fixed while all the coefficients vary. The discriminant locus of such a system is the closure of the set of all coefficients for which the system has multiple roots with non-zero coordinates. For dehomogenized discriminant loci, we give parametrizations of those irreducible components that depend on the coefficients of all the equations. We prove that if such a component has codimension 1, then the parametrization is inverse to the logarithmic Gauss map of the component (an analogue of Kapranov's result for the $A$-discriminant). Our argument is based on the linearization of algebraic systems and the parametrization of the set of its critical values.
Keywords: linearization of an algebraic system
Mots-clés : discriminant locus, logarithmic Gauss map.
@article{IM2_2012_76_5_a1,
     author = {I. A. Antipova and A. K. Tsikh},
     title = {The discriminant locus of a~system of $n$ {Laurent} polynomials in $n$ variables},
     journal = {Izvestiya. Mathematics },
     pages = {881--906},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a1/}
}
TY  - JOUR
AU  - I. A. Antipova
AU  - A. K. Tsikh
TI  - The discriminant locus of a~system of $n$ Laurent polynomials in $n$ variables
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 881
EP  - 906
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a1/
LA  - en
ID  - IM2_2012_76_5_a1
ER  - 
%0 Journal Article
%A I. A. Antipova
%A A. K. Tsikh
%T The discriminant locus of a~system of $n$ Laurent polynomials in $n$ variables
%J Izvestiya. Mathematics 
%D 2012
%P 881-906
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a1/
%G en
%F IM2_2012_76_5_a1
I. A. Antipova; A. K. Tsikh. The discriminant locus of a~system of $n$ Laurent polynomials in $n$ variables. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 881-906. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a1/

[1] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[2] I. A. Antipova, “Inversion of many-dimensional Mellin transforms and solutions of algebraic equations”, Sb. Math., 198:4 (2007), 447–463 | DOI | MR | Zbl

[3] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel (Oslo, Norway, 2002), Springer-Verlag, Berlin, 2004, 653–672 | MR | Zbl

[4] M. M. Kapranov, “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:1 (1991), 277–285 | DOI | MR | Zbl

[5] M. A. Cueto, A. Dickenstein, “Some results on inhomogeneous discriminants”, Proceedings of the XVIth Latin American Algebra Colloquium, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, 41–62 | MR | Zbl

[6] I. A. Antipova, “Parametrization of the discriminant locus for the general polynomial transform of ${\mathbb C}^n$”, Dokl. Math., 78:2 (2008), 713–716 | DOI | MR | Zbl

[7] Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Wiley, New York–London, 1962 | MR | MR | Zbl

[8] M. Passare, A. Tsikh, “Amoebas: their spines and their contours”, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | DOI | MR | Zbl

[9] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl

[10] N. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. R. Acad. Sci. Paris, 172 (1921), 658–661 | Zbl

[11] I. A. Antipova, “An expression for the superposition of general algebraic functions in terms of hypergeometric series”, Siberian Math. J., 44:5 (2003), 757–764 | DOI | MR | Zbl

[12] V. A. Stepanenko, “O reshenii sistemy $n$ algebraicheskikh uravnenii ot $n$ neizvestnykh s pomoschyu gipergeometricheskikh funktsii”, Vestn. Krasnoyarskogo gos. un-ta. Seriya fiz.-mat. nauk, 2003, no. 1, 35–48

[13] D. Mumford, Algebraic geometry, v. I, Complex projective varieties, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl

[14] D. N. Bernshtein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR | Zbl