The discriminant locus of a~system of $n$ Laurent polynomials in $n$ variables
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 881-906
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of $n$ algebraic equations in $n$ variables, where
the exponents of the monomials in each equation are fixed while all the
coefficients vary. The discriminant locus of such a system is
the closure of the set of all coefficients for which the system has
multiple roots with non-zero coordinates. For dehomogenized discriminant loci,
we give parametrizations of those irreducible components that depend
on the coefficients of all the equations. We prove that if such a component
has codimension 1, then the parametrization is inverse to the logarithmic
Gauss map of the component (an analogue of Kapranov's result for the
$A$-discriminant). Our argument is based on the linearization of algebraic
systems and the parametrization of the set of its critical values.
Keywords:
linearization of an algebraic system
Mots-clés : discriminant locus, logarithmic Gauss map.
Mots-clés : discriminant locus, logarithmic Gauss map.
@article{IM2_2012_76_5_a1,
author = {I. A. Antipova and A. K. Tsikh},
title = {The discriminant locus of a~system of $n$ {Laurent} polynomials in $n$ variables},
journal = {Izvestiya. Mathematics },
pages = {881--906},
publisher = {mathdoc},
volume = {76},
number = {5},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a1/}
}
TY - JOUR AU - I. A. Antipova AU - A. K. Tsikh TI - The discriminant locus of a~system of $n$ Laurent polynomials in $n$ variables JO - Izvestiya. Mathematics PY - 2012 SP - 881 EP - 906 VL - 76 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a1/ LA - en ID - IM2_2012_76_5_a1 ER -
I. A. Antipova; A. K. Tsikh. The discriminant locus of a~system of $n$ Laurent polynomials in $n$ variables. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 881-906. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a1/