Commutative homogeneous spaces with one-dimensional stabilizer
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 820-839.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find all homogeneous spaces $X=G/H$ of algebraic groups with one-dimensional stabilizer for which the action $G :T^*X$ is co-isotropic (that is, the tangent space of a generic $G$-orbit is co-isotropic).
Keywords: commutative homogeneous space, action of algebraic groups.
@article{IM2_2012_76_4_a6,
     author = {S. A. Shashkov},
     title = {Commutative homogeneous spaces with one-dimensional stabilizer},
     journal = {Izvestiya. Mathematics },
     pages = {820--839},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a6/}
}
TY  - JOUR
AU  - S. A. Shashkov
TI  - Commutative homogeneous spaces with one-dimensional stabilizer
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 820
EP  - 839
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a6/
LA  - en
ID  - IM2_2012_76_4_a6
ER  - 
%0 Journal Article
%A S. A. Shashkov
%T Commutative homogeneous spaces with one-dimensional stabilizer
%J Izvestiya. Mathematics 
%D 2012
%P 820-839
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a6/
%G en
%F IM2_2012_76_4_a6
S. A. Shashkov. Commutative homogeneous spaces with one-dimensional stabilizer. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 820-839. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a6/

[1] E. B. Vinberg, “Commutative homogeneous spaces and co-isotropic symplectic actions”, Russian Math. Surveys, 56:1 (2001), 1–60 | DOI | MR | Zbl

[2] L. G. Rybnikov, “On the commutativity of weakly commutative Riemannian homogeneous spaces”, Funct. Anal. Appl., 37:2 (2003), 114–122 | DOI | MR | Zbl

[3] L. Corwin, F. P. Greenleaf, “Commutativity of invariant differential operators on nilpotent homogeneous spaces with finite multiplicity”, Comm. Pure Appl. Math., 45:6 (1992), 681–748 | DOI | MR | Zbl

[4] H. Fujiwara, G. Lion, B. Magneron, S. Mehdi, “A commutativity criterion for certain algebras of invariant differential operators on nilpotent homogeneous spaces”, Math. Ann., 327:3 (2003), 513–544 | DOI | MR | Zbl

[5] O. S. Yakimova, Gelfand pairs, Bonner Math. Schriften, 374, Universität Bonn, Bonn, 2005 | MR | Zbl

[6] I. V. Losev, “Co-isotropic representations of reductive groups”, Trans. Moscow Math. Soc., 2005, 143–168 | MR

[7] I. V. Losev, “On complex weakly commutative homogeneous spaces”, Trans. Moscow Math. Soc., 2006, 199–223 | MR | Zbl

[8] I. V. Losev, “Classification of weakly commutative complex homogeneous spaces”, Russian Math. Surveys, 62:2 (2007), 390–392 | DOI | MR | Zbl

[9] E. B. Vinberg, “Invariantnye lineinye svyaznosti v odnorodnom prostranstve”, Tr. MMO, 9, Izd-vo Mosk. un-ta, M., 1960, 191–210 | MR | Zbl

[10] V. V. Morozov, “Klassifikatsiya nilpotentnykh algebr Li shestogo poryadka”, Izv. vuzov. Matem., 1958, no. 4, 161–171 | MR | Zbl