On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 688-701.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider orthorecursive expansions (a generalization of orthogonal series) over families of non-orthogonal wavelets formed by the dyadic dilations and integer shifts of a given function $\varphi$. We estimate the rate of convergence of such expansions under some fairly relaxed restrictions on $\varphi$ and give examples of these estimates in some concrete cases.
Keywords: orthorecursive expansion, wavelets, Parseval's identity, greedy algorithm, rate of convergence, computational stability, Faber–Schauder system.
@article{IM2_2012_76_4_a3,
     author = {A. Yu. Kudryavtsev},
     title = {On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets},
     journal = {Izvestiya. Mathematics },
     pages = {688--701},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Kudryavtsev
TI  - On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 688
EP  - 701
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/
LA  - en
ID  - IM2_2012_76_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Kudryavtsev
%T On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets
%J Izvestiya. Mathematics 
%D 2012
%P 688-701
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/
%G en
%F IM2_2012_76_4_a3
A. Yu. Kudryavtsev. On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 688-701. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/

[1] T. P. Lukashenko, “Rekursivnye razlozheniya, podobnye ortogonalnym”, Matematika, Ekonomika, Ekologiya, Obrazovanie, VII Mezhdunarodn. konf. Ryady Fure i ikh prilozheniya (1999), Rostov-na-Donu, 1999

[2] T. P. Lukashenko, “Properties of orthorecursive expansions over nonorthogonal systems”, Moscow Univ. Math. Bull., 56:1 (2001), 5–9 | MR | Zbl

[3] B. S. Stechkin, S. B. Stechkin, “Mean square value and arithmetic mean”, Soviet Math. Dokl., 2 (1961), 279–281 | MR | Zbl

[4] Ch. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Boston, MA, 1992 | MR | Zbl

[5] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[6] A. Yu. Kudryavtsev, “Ortorekursivnye razlozheniya po sistemam szhatii i sdvigov”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokladov 11-i Saratovskoi zimnei shkoly, Izd-vo GosUNTs “Kolledzh”, Saratov, 2002, 106–108

[7] A. Yu. Kudryavtsev, “Ortorekursivnye razlozheniya po sistemam szhatii i sdvigov fiksirovannoi funktsii”, Mezhdunarodn. shkola-seminar po geometrii i analizu pamyati N. V. Efimova (Abrau-Dyurso, 2002), Rostovskii gos. un-t, Rostov-na-Donu, 2002, 133–135

[8] A. V. Politov, “Orthorecursive expansions in Hilbert spaces”, Moscow Univ. Math. Bull., 65:3 (2010), 95–99 | DOI

[9] R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:1 (1996), 173–187 | DOI | MR | Zbl

[10] V. V. Galatenko, “On orthorecursive expansions with errors in the calculation of coefficients”, Izv. Math., 69:1 (2005), 1–14 | DOI | MR | Zbl

[11] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl

[12] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[13] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Amer. Math. Soc., Providence, RI, 2011 | MR | MR | Zbl | Zbl