On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 688-701

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider orthorecursive expansions (a generalization of orthogonal series) over families of non-orthogonal wavelets formed by the dyadic dilations and integer shifts of a given function $\varphi$. We estimate the rate of convergence of such expansions under some fairly relaxed restrictions on $\varphi$ and give examples of these estimates in some concrete cases.
Keywords: orthorecursive expansion, wavelets, Parseval's identity, greedy algorithm, rate of convergence, computational stability, Faber–Schauder system.
@article{IM2_2012_76_4_a3,
     author = {A. Yu. Kudryavtsev},
     title = {On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets},
     journal = {Izvestiya. Mathematics },
     pages = {688--701},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Kudryavtsev
TI  - On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 688
EP  - 701
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/
LA  - en
ID  - IM2_2012_76_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Kudryavtsev
%T On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets
%J Izvestiya. Mathematics 
%D 2012
%P 688-701
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/
%G en
%F IM2_2012_76_4_a3
A. Yu. Kudryavtsev. On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 688-701. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a3/