Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 669-680

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a classification of all compact homogeneous manifolds of dimension at most 7 up to a finite covering. Earlier classifications of this kind up to dimension 6 are obtained by a unified method. The main focus of the paper is on the case of dimension 7.
Keywords: homogeneous manifold, finite covering, natural fibration.
@article{IM2_2012_76_4_a1,
     author = {V. V. Gorbatsevich},
     title = {Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering},
     journal = {Izvestiya. Mathematics },
     pages = {669--680},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 669
EP  - 680
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/
LA  - en
ID  - IM2_2012_76_4_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering
%J Izvestiya. Mathematics 
%D 2012
%P 669-680
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/
%G en
%F IM2_2012_76_4_a1
V. V. Gorbatsevich. Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 669-680. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/