Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 669-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a classification of all compact homogeneous manifolds of dimension at most 7 up to a finite covering. Earlier classifications of this kind up to dimension 6 are obtained by a unified method. The main focus of the paper is on the case of dimension 7.
Keywords: homogeneous manifold, finite covering, natural fibration.
@article{IM2_2012_76_4_a1,
     author = {V. V. Gorbatsevich},
     title = {Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering},
     journal = {Izvestiya. Mathematics },
     pages = {669--680},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 669
EP  - 680
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/
LA  - en
ID  - IM2_2012_76_4_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering
%J Izvestiya. Mathematics 
%D 2012
%P 669-680
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/
%G en
%F IM2_2012_76_4_a1
V. V. Gorbatsevich. Compact homogeneous manifolds of dimension at~most~7 up to a~finite covering. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 669-680. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a1/

[1] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras I. Foundations of Lie theory. Lie transformation groups, Encyclopaedia Math. Sci., 20, Springer-Verlag, Berlin, 1993, 95–229 | MR | MR | Zbl | Zbl

[2] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | DOI | MR | Zbl | Zbl

[3] V. V. Gorbatsevich, “O klassifikatsii chetyrekhmernykh kompaktnykh odnorodnykh prostranstv”, UMN, 32:2 (1977), 207–208 | MR | Zbl

[4] V. V. Gorbatsevich, “On compact homogeneous spaces of dimension 5 and higher”, Russian Math. Surveys, 33:3 (1978), 153–154 | DOI | MR | Zbl | Zbl

[5] V. V. Gorbatsevich, “O kompaktnykh odnorodnykh prostranstvakh maloi razmernosti”, Geometricheskie metody v zadachakh algebry i analiza, YarGU, Yaroslavl, 1980, 37–60 | MR

[6] G. D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–636 | DOI | MR | Zbl

[7] A. L. Onishchik, Topology of transitive transformation groups, Barth, Leipzig, 1994 | MR | MR | Zbl | Zbl

[8] L. Auslander, “An exposition of the structure of solvmanifolds. I. Algebraic theory”, Bull. Amer. Math. Soc., 79:2 (1973), 227–261 | DOI | MR | Zbl

[9] V. V. Gorbatsevič, “Compact aspherical homogeneous spaces up to a finite covering”, Ann. Global Anal. Geom., 1:3 (1983), 103–118 | DOI | MR | Zbl

[10] S. Klaus, Einfach-Zusammenhangende Kompakte Homogene Raume bis zur Dimension Neun, Diploma thesis, University of Mainz, Mainz, 1988, 98 pp.

[11] M. Kreck, S. Stolz, “A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with $\operatorname{SU}(3)\times \operatorname{SU}(2)\times U(1)$-symmetry”, Ann. of Math. (2), 127:2 (1988), 373–388 | DOI | MR | Zbl

[12] M. Kreck, S. Stolz, “Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature”, J. Differential Geom., 33:2 (1991), 465–486 | MR | Zbl

[13] B. Kruggel, Quotienten halbeinfacher, kompakter Liescher Gruppen; Ein Klassifikation bis zur Dimension 12, Diploma Thesis, Universitat Dusseldorf, Dusseldorf, 1993

[14] F. Bermbach, On simply-connected 7-manifolds, Thesis, Universitat Mainz, Mainz, 1991

[15] V. V. Gorbatsevich, “On a fibration of compact homogeneous spaces”, Trans. Moscow Math. Soc., 1983, no. 1, 129–157 ; II 1986, no. 5, 38–49 | MR | Zbl | MR | Zbl

[16] V. V. Gorbatsevich, “Compact homogeneous spaces with a semisimple fundamental group”, Siberian Math. J., 22:1 (1981), 34–49 ; “II”, Siberian Math. J., 27:5 (1986), 660–669 | DOI | MR | MR | Zbl | Zbl

[17] V. V. Gorbatsevich, “O kompaktnykh odnorodnykh prostranstvakh s razreshimoi fundamentalnoi gruppoi. I”, Geometricheskie metody v zadachakh analiza i algebry, YarGU, Yaroslavl, 1981, 71–87 ; “II”, Вопросы теории групп и гомологической алгебры, ЯрГУ, Ярославль, 1982, 13–28 ; “III”, Вопросы теории групп и гомологической алгебры, ЯрГУ, Ярославль, 1985, 93–103 ; “IV”, Вопросы теории групп и гомологической алгебры, ЯрГУ, Ярославль, 1991, 88–98 | MR | Zbl | MR | MR | Zbl | MR | Zbl | MR | Zbl

[18] V. V. Gorbatsevich, “Modifikatsii tranzitivnykh deistvii grupp Li na kompaktnykh mnogoobraziyakh i ikh primeneniya”, Voprosy teorii grupp i gomologicheskoi algebry, YarGU, Yaroslavl, 1981, 131–145 | MR | Zbl