On the number of subgraphs of the Barabási–Albert random graph
Izvestiya. Mathematics, Tome 76 (2012) no. 3, pp. 607-625
Cet article a éte moissonné depuis la source Math-Net.Ru
We study a model of a random graph of the type of the Barabási–Albert preferential attachment model. We develop a technique that makes it possible to estimate the mathematical expectation for a fairly wide class of random variables in the model under consideration. We use this technique to prove a theorem on the asymptotics of the mathematical expectation of the number of subgraphs isomorphic to a certain fixed graph in the random graphs of this model.
Keywords:
random graph, preferential attachment, number of subgraphs.
Mots-clés : Internet graph, Barabási–Albert model
Mots-clés : Internet graph, Barabási–Albert model
@article{IM2_2012_76_3_a7,
author = {A. A. Ryabchenko and E. A. Samosvat},
title = {On the number of subgraphs of the {Barab\'asi{\textendash}Albert} random graph},
journal = {Izvestiya. Mathematics},
pages = {607--625},
year = {2012},
volume = {76},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a7/}
}
A. A. Ryabchenko; E. A. Samosvat. On the number of subgraphs of the Barabási–Albert random graph. Izvestiya. Mathematics, Tome 76 (2012) no. 3, pp. 607-625. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a7/
[1] A.-L. Barabási, R. Albert, “Emergence of scaling in random networks”, Science, 286:5439 (1999), 509–512 | DOI | MR | Zbl
[2] R. Albert, H. Jeong, A.-L. Barabási, “Internet: Diameter of the World-Wide Web”, Nature, 401:6749 (1999), 130–131
[3] B. Bollobás, O. Riordan, “Mathematical results on scale-free random graphs”, Handbook of graphs and networks, Wiley, Weinheim, 2003, 1–34 | MR | Zbl
[4] B. Bollobás, O. Riordan, “The diameter of a scale-free random graph”, Combinatorica, 24:1 (2004), 5–34 | DOI | MR | Zbl