On the number of subgraphs of the Barab\'asi--Albert random graph
Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 607-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a model of a random graph of the type of the Barabási–Albert preferential attachment model. We develop a technique that makes it possible to estimate the mathematical expectation for a fairly wide class of random variables in the model under consideration. We use this technique to prove a theorem on the asymptotics of the mathematical expectation of the number of subgraphs isomorphic to a certain fixed graph in the random graphs of this model.
Keywords: random graph, preferential attachment, Barabási–Albert model, number of subgraphs.
Mots-clés : Internet graph
@article{IM2_2012_76_3_a7,
     author = {A. A. Ryabchenko and E. A. Samosvat},
     title = {On the number of subgraphs of the {Barab\'asi--Albert} random graph},
     journal = {Izvestiya. Mathematics },
     pages = {607--625},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a7/}
}
TY  - JOUR
AU  - A. A. Ryabchenko
AU  - E. A. Samosvat
TI  - On the number of subgraphs of the Barab\'asi--Albert random graph
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 607
EP  - 625
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a7/
LA  - en
ID  - IM2_2012_76_3_a7
ER  - 
%0 Journal Article
%A A. A. Ryabchenko
%A E. A. Samosvat
%T On the number of subgraphs of the Barab\'asi--Albert random graph
%J Izvestiya. Mathematics 
%D 2012
%P 607-625
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a7/
%G en
%F IM2_2012_76_3_a7
A. A. Ryabchenko; E. A. Samosvat. On the number of subgraphs of the Barab\'asi--Albert random graph. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 607-625. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a7/

[1] A.-L. Barabási, R. Albert, “Emergence of scaling in random networks”, Science, 286:5439 (1999), 509–512 | DOI | MR | Zbl

[2] R. Albert, H. Jeong, A.-L. Barabási, “Internet: Diameter of the World-Wide Web”, Nature, 401:6749 (1999), 130–131

[3] B. Bollobás, O. Riordan, “Mathematical results on scale-free random graphs”, Handbook of graphs and networks, Wiley, Weinheim, 2003, 1–34 | MR | Zbl

[4] B. Bollobás, O. Riordan, “The diameter of a scale-free random graph”, Combinatorica, 24:1 (2004), 5–34 | DOI | MR | Zbl